1
|
Han Y, Zhang L, Yang W. Synthesis of Mesoporous Silica Using the Sol-Gel Approach: Adjusting Architecture and Composition for Novel Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:903. [PMID: 38869528 PMCID: PMC11173812 DOI: 10.3390/nano14110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The sol-gel chemistry of silica has long been used for manipulating the size, shape, and microstructure of mesoporous silica particles. This manipulation is performed in mild conditions through controlling the hydrolysis and condensation of silicon alkoxide. Compared to amorphous silica particles, the preparation of mesoporous silica, such as MCM-41, using the sol-gel approach offers several unique advantages in the fields of catalysis, medicament, and environment, due to its ordered mesoporous structure, high specific surface area, large pore volume, and easily functionalized surface. In this review, our primary focus is on the latest research related to the manipulation of mesoporous silica architectures using the sol-gel approach. We summarize various structures, including hollow, yolk-shell, multi-shelled hollow, Janus, nanotubular, and 2D membrane structures. Additionally, we survey sol-gel strategies involving the introduction of various functional elements onto the surface of mesoporous silica to enhance its performance. Furthermore, we outline the prospects and challenges associated with mesoporous silica featuring different structures and functions in promising applications, such as high-performance catalysis, biomedicine, wastewater treatment, and CO2 capture.
Collapse
Affiliation(s)
- Yandong Han
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Lin Zhang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Wensheng Yang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Hammi N, Bonneau M, El Kadib A, Kitagawa S, Loiseau T, Volkringer C, Royer S, Dhainaut J. Enhanced Gas Adsorption in HKUST-1@Chitosan Aerogels, Cryogels, and Xerogels: An Evaluation Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53395-53404. [PMID: 37934853 DOI: 10.1021/acsami.3c10408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
This study investigates the use of chitosan hydrogel microspheres as a template for growing an extended network of MOF-type HKUST-1. Different drying methods (supercritical CO2, freeze-drying, and vacuum drying) were used to generate three-dimensional polysaccharide nanofibrils embedding MOF nanoclusters. The resulting HKUST-1@Chitosan beads exhibit uniform and stable loadings of HKUST-1 and were used for the adsorption of CO2, CH4, Xe, and Kr. The maximum adsorption capacity of CO2 was found to be 1.98 mmol·g-1 at 298 K and 1 bar, which is significantly higher than those of most MOF-based composite materials. Based on Henry's constants, thus-prepared HKUST-1@CS beads also exhibit fair selectivity for CO2 over CH4 and Xe over Kr, making them promising candidates for capture and separation applications.
Collapse
Affiliation(s)
- Nisrine Hammi
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
- Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638─IMEC─Institut Michel-Eugène Chevreul, 59000 Lille, France
| | - Mickaele Bonneau
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Thierry Loiseau
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sébastien Royer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Jérémy Dhainaut
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| |
Collapse
|
3
|
Bucura F, Spiridon SI, Ionete RE, Marin F, Zaharioiu AM, Armeanu A, Badea SL, Botoran OR, Ionete EI, Niculescu VC, Constantinescu M. Selectivity of MOFs and Silica Nanoparticles in CO 2 Capture from Flue Gases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2637. [PMID: 37836278 PMCID: PMC10574321 DOI: 10.3390/nano13192637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023]
Abstract
Until reaching climate neutrality by attaining the EU 2050 level, the current levels of CO2 must be mitigated through the research and development of resilient technologies. This research explored potential approaches to lower CO2 emissions resulting from combustion fossil fuels in power plant furnaces. Different nanomaterials (MOFs versus silica nanoparticles) were used in this context to compare their effectiveness to mitigate GHG emissions. Porous materials known as metal-organic frameworks (MOFs) are frequently employed in sustainable CO2 management for selective adsorption and separation. Understanding the underlying mechanism is difficult due to their textural characteristics, the presence of functional groups and the variation in technological parameters (temperature and pressure) during CO2-selective adsorption. A silica-based nanomaterial was also employed in comparison. To systematically map CO2 adsorption as a function of the textural and compositional features of the nanomaterials and the process parameters set to a column-reactor system (CRS), 160 data points were collected for the current investigation. Different scenarios, as a function of P (bar) or as a function of T (K), were designed based on assumptions, 1 and 5 vs. 1-10 (bar) and 313.15 and 373.15 vs. 313.15-423.15 (K), where the regression analyses through Pearson coefficients of 0.92-0.95, coefficients of determination of 0.87-0.90 and p-values < 0.05, on predictive and on-site laboratory data, confirmed the performances of the CRS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4 Uzinei Street, P.O. Box Raureni 7, 240050 Ramnicu Valcea, Romania
| | - Marius Constantinescu
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4 Uzinei Street, P.O. Box Raureni 7, 240050 Ramnicu Valcea, Romania
| |
Collapse
|
4
|
Bi J, Li P, Liu J, Wang Y, Song X, Kang X, Sun X, Zhu Q, Han B. High-Rate CO 2 Electrolysis to Formic Acid over a Wide Potential Window: An Electrocatalyst Comprised of Indium Nanoparticles on Chitosan-Derived Graphene. Angew Chem Int Ed Engl 2023; 62:e202307612. [PMID: 37469100 DOI: 10.1002/anie.202307612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Realizing industrial-scale production of HCOOH from the CO2 reduction reaction (CO2 RR) is very important, but the current density as well as the electrochemical potential window are still limited to date. Herein, we achieved this by integration of chemical adsorption and electrocatalytic capabilities for the CO2 RR via anchoring In nanoparticles (NPs) on biomass-derived substrates to create In/X-C (X=N, P, B) bifunctional active centers. The In NPs/chitosan-derived N-doped defective graphene (In/N-dG) catalyst had outstanding performance for the CO2 RR with a nearly 100 % Faradaic efficiency (FE) of HCOOH across a wide potential window. Particularly, at 1.2 A ⋅ cm-2 high current density, the FE of HCOOH was as high as 96.0 %, and the reduction potential was as low as -1.17 V vs RHE. When using a membrane electrode assembly (MEA), a pure HCOOH solution could be obtained at the cathode without further separation and purification. The FE of HCOOH was still up to 93.3 % at 0.52 A ⋅ cm-2 , and the HCOOH production rate could reach 9.051 mmol ⋅ h-1 ⋅ cm-2 . Our results suggested that the defects and multilayer structure in In/N-dG could not only enhance CO2 chemical adsorption capability, but also trigger the formation of an electron-rich catalytic environment around In sites to promote the generation of HCOOH.
Collapse
Affiliation(s)
- Jiahui Bi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengsong Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiyuan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| |
Collapse
|
5
|
Dong H, Li L, Li C. Controlled alkali etching of MOFs with secondary building units for low-concentration CO 2 capture. Chem Sci 2023; 14:8507-8513. [PMID: 37592979 PMCID: PMC10430719 DOI: 10.1039/d3sc03213b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Low-concentration CO2 capture is particularly challenging because it requires highly selective adsorbents that can effectively capture CO2 from gas mixtures containing other components such as nitrogen and water vapor. In this study, we have successfully developed a series of controlled alkali-etched MOF-808-X (where X ranges from 0.04 to 0.10), the FT-IR and XPS characterizations revealed the presence of hydroxyl groups (-OH) on the zirconium clusters. Low-concentration CO2 capture experiments demonstrated improved CO2 capture performance of the MOF-808-X series compared to the pristine MOF-808 under dry conditions (400 ppm CO2). Among them, MOF-808-0.07 with abundant Zr-OH sites showed the highest CO2 capture capacity of 0.21 mmol g-1 under dry conditions, which is 70 times higher than that of pristine MOF-808. Additionally, MOF-808-0.07 exhibited fast adsorption kinetics, stable CO2 capture under humid air conditions (with a relative humidity of 30%), and stable regeneration even after 50 cycles of adsorption and desorption. In situ DRIFTS and 13C CP-MAS ssNMR characterizations revealed that the enhanced low-concentration CO2 capture is attributed to the formation of a stable six-membered ring structure through the interaction of intramolecular hydrogen bonds between neighboring Zr-OH sites via a chemisorption mechanism.
Collapse
Affiliation(s)
- Hong Dong
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Lihua Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
6
|
Bi J, Li P, Liu J, Jia S, Wang Y, Zhu Q, Liu Z, Han B. Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO 2 electrolysis to C 2+ alcohols. Nat Commun 2023; 14:2823. [PMID: 37198154 DOI: 10.1038/s41467-023-38524-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
High-rate electrolysis of CO2 to C2+ alcohols is of particular interest, but the performance remains far from the desired values to be economically feasible. Coupling gas diffusion electrode (GDE) and 3D nanostructured catalysts may improve the efficiency in a flow cell of CO2 electrolysis. Herein, we propose a route to prepare 3D Cu-chitosan (CS)-GDL electrode. The CS acts as a "transition layer" between Cu catalyst and the GDL. The highly interconnected network induces growth of 3D Cu film, and the as-prepared integrated structure facilitates rapid electrons transport and mitigates mass diffusion limitations in the electrolysis. At optimum conditions, the C2+ Faradaic efficiency (FE) can reach 88.2% with a current density (geometrically normalized) as high as 900 mA cm-2 at the potential of -0.87 V vs. reversible hydrogen electrode (RHE), of which the C2+ alcohols selectivity is 51.4% with a partial current density of 462.6 mA cm-2, which is very efficient for C2+ alcohols production. Experimental and theoretical study indicates that CS induces growth of 3D hexagonal prismatic Cu microrods with abundant Cu (111)/Cu (200) crystal faces, which are favorable for the alcohol pathway. Our work represents a novel example to design efficient GDEs for electrocatalytic CO2 reduction (CO2RR).
Collapse
Affiliation(s)
- Jiahui Bi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Pengsong Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jiyuan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai, 200062, Shanghai, P. R. China
| | - Yong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai, 200062, Shanghai, P. R. China.
| |
Collapse
|
7
|
Activated carbon from biomass: Preparation, factors improving basicity and surface properties for enhanced CO2 capture capacity – A review. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Lin Hu Y, Rong Q, Chen C, Bing Liu X. Sustainable and efficient 2,3-dihydroquinazolin-4(1H)-ones production over heterogeneous and recyclable Al-MCM-41 supported dual imidazolium ionic liquids nanocomposites. JOURNAL OF SAUDI CHEMICAL SOCIETY 2023. [DOI: 10.1016/j.jscs.2022.101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
|