1
|
Wang C, Lü Y, Qi H, Luo X, He L. Flotation mechanism and performance of air/condensate bubbles for removing oil droplets in the presence of acetic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172311. [PMID: 38599416 DOI: 10.1016/j.scitotenv.2024.172311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Flotation technology is widely utilized to remove emulsified oil droplets from Produced water. Organic acid adsorption on the oil droplet surface affects bubble attachment, reducing oil removal efficiency. This investigation exploited the principle of similar dissolution to synthesize condensate bubbles (CB). The surface properties of oil droplets and CB and air bubbles (AB) were appraised using FTIR, zeta potential, interfacial tension, and contact angle measurements. The research also investigated the effects of acetic acids (AA) on the adhesion of oil droplets to AB and CB along with the underlying mechanism via the Extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) interaction theory and the Stefan-Reynolds model of liquid film thinning, integrated with adhesion times. Flotation efficiency and kinetic dissimilarities between AB and CB were also examined. The results indicated that CB exhibits superior lipophilic hydrophobicity compared to AB, reduced induction and spreading times upon oil droplet attachment, and maximized oil removal efficiency. Furthermore, CB could mitigate the impact of AA on adhesion. The interaction barriers between CB and oil droplets were minimal, and the thinning rate of the hydration film was quicker than in AB. The conventional first-order model proved effective in fitting the AB flotation, whereas a delay constant was applied to the model of the CB flotation rate.
Collapse
Affiliation(s)
- Ce Wang
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, Shandong Province 266580, China
| | - Yuling Lü
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, Shandong Province 266580, China; Surface Engineering Pilot Test Center, CNPC, Heilongjiang, Daqing 163000, China.
| | - Hongwei Qi
- China Petroleum & Chemical Co., Ltd. of North Branch, Ordos, Inner Mongolia 017400, China
| | - Xiaoming Luo
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, Shandong Province 266580, China; Surface Engineering Pilot Test Center, CNPC, Heilongjiang, Daqing 163000, China
| | - Limin He
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, Shandong Province 266580, China; Surface Engineering Pilot Test Center, CNPC, Heilongjiang, Daqing 163000, China
| |
Collapse
|
2
|
Wang C, Lü Y, Song C, Zhang D, Rong F, He L. Separation of emulsified crude oil from produced water by gas flotation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157304. [PMID: 35839883 DOI: 10.1016/j.scitotenv.2022.157304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The development and production of oil and gas fields would eventually result in a considerable amount of oily generated water, posing serious risks to humans and the environment. Nowadays, the oil concentration in the drainage stream of the produced water is strictly regulated, and many countries have established strict emission standards. As an indispensable oily wastewater treatment technology, flotation technology has attracted much attention because of its maturity, economy, practicality, and relative efficiency. Firstly, this paper summarizes and compares flotation techniques, such as dissolved gas flotation, induced gas flotation, electroflotation, and compact flotation units widely used in produced water treatment offshore in recent years. Considering the complexity of the mechanism of oil removal by air flotation, the mechanism of the oil droplet-bubble interaction is further discussed. The effects of flocculant, PH, and salinity on the oil droplet-bubble interaction in the flotation process were summarized from the perspective of the microscopic colloidal interface, which has a specific guiding role in improving the oil removal efficiency in the gas flotation process. Finally, the research status of produced water treatment by air flotation is summarized, and the feasible research direction is put forward.
Collapse
Affiliation(s)
- Ce Wang
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Shandong, Qingdao 266580, China
| | - Yuling Lü
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Shandong, Qingdao 266580, China.
| | - Chao Song
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Shandong, Qingdao 266580, China
| | - Dechong Zhang
- Xianhe Oil Production Plant, Shengli Oilfield Company, Sinopec, Shandong, Dongying 257000, China
| | - Feng Rong
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Shandong, Qingdao 266580, China
| | - Limin He
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Shandong, Qingdao 266580, China
| |
Collapse
|
3
|
Horeh MB, Hassani K, Rostami B, Ghorbanizadeh S. Synergistic effect of salt ions and water‐soluble amphiphilic compounds of acidic crude oil on surface and
interfacial tension. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mohsen B. Horeh
- Institute of Petroleum Engineering, School of Chemical Engineering University of Tehran Tehran Iran
| | - Kamran Hassani
- Institute of Petroleum Engineering, School of Chemical Engineering University of Tehran Tehran Iran
| | - Behzad Rostami
- Institute of Petroleum Engineering, School of Chemical Engineering University of Tehran Tehran Iran
| | - Salman Ghorbanizadeh
- Institute of Petroleum Engineering, School of Chemical Engineering University of Tehran Tehran Iran
| |
Collapse
|
4
|
Rangel-Muñoz N, González-Barrios AF, Pradilla D, Osma JF, Cruz JC. Novel Bionanocompounds: Outer Membrane Protein A and Lacasse Co-Immobilized on Magnetite Nanoparticles for Produced Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2278. [PMID: 33213016 PMCID: PMC7698600 DOI: 10.3390/nano10112278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/02/2023]
Abstract
The oil and gas industry generates large amounts of oil-derived effluents such as Heavy Crude Oil (HCO) in water (W) emulsions, which pose a significant remediation and recovery challenge due to their high stability and the presence of environmentally concerning compounds. Nanomaterials emerge as a suitable alternative for the recovery of such effluents, as they can separate them under mild conditions. Additionally, different biomolecules with bioremediation and interfacial capabilities have been explored to functionalize such nanomaterials to improve their performance even further. Here, we put forward the notion of combining these technologies for the simultaneous separation and treatment of O/W effluent emulsions by a novel co-immobilization approach where both OmpA (a biosurfactant) and Laccase (a remediation enzyme) were effectively immobilized on polyether amine (PEA)-modified magnetite nanoparticles (MNPs). The obtained bionanocompounds (i.e., MNP-PEA-OmpA, MNP-PEA-Laccase, and MNP-PEA-OmpA-Laccase) were successfully characterized via DLS, XRD, TEM, TGA, and FTIR. The demulsification of O/W emulsions was achieved by MNP-PEA-OmpA and MNP-PEA-OmpA-Laccase at 5000 ppm. This effect was further improved by applying an external magnetic field to approach HCO removal efficiencies of 81% and 88%, respectively. The degradation efficiencies with these two bionanocompounds reached levels of between 5% and 50% for the present compounds. Taken together, our results indicate that the developed nanoplatform holds significant promise for the efficient treatment of emulsified effluents from the oil and gas industry.
Collapse
Affiliation(s)
- Nathaly Rangel-Muñoz
- Department of Biomedical Engineering, Universidad de Los Andes, Carrera 1 este No 19A-40, Bogotá 111711, Colombia;
| | - Andres Fernando González-Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia; (A.F.G.-B.); (D.P.)
| | - Diego Pradilla
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia; (A.F.G.-B.); (D.P.)
| | - Johann F. Osma
- CMUA, Department of Electrical and Electronic Engineering, Universidad de Los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Carrera 1 este No 19A-40, Bogotá 111711, Colombia;
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
5
|
Dudek M, Vik EA, Aanesen SV, Øye G. Colloid chemistry and experimental techniques for understanding fundamental behaviour of produced water in oil and gas production. Adv Colloid Interface Sci 2020; 276:102105. [PMID: 31978641 DOI: 10.1016/j.cis.2020.102105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/30/2023]
Abstract
Due to increasing volumes of produced water and environmental concerns related to its discharge, water treatment has become a major challenge during the production of crude oil and natural gas. With continuously stricter regulations for discharging produced water to sea, the operators are obliged to look for ways to improve the treatment processes or re-use the water in a beneficial way, for example as a pressure support during oil recovery (produced water re-injection). To improve the knowledge of the underlying phenomena governing separation processes, detailed information of the composition and interfacial properties of produced water is undoubtedly useful and could provide valuable input for better understanding and improving separation models. This review article summarizes knowledge gained about produced water composition and the most common treatment technologies, which are later used to describe the fundamental phenomena occurring during separation. These colloidal interactions, such as coalescence of oil droplets, bubble-droplet attachment or partitioning of components between oil and water, are of crucial importance for the performance of various technologies and are sometimes overlooked in physical considerations of produced water treatment. The last part of the review deals with the experimental methodologies that are available to study these phenomena, provide data for models and support development of more efficient separation processes.
Collapse
|
6
|
Dudek M, Bertheussen A, Dumaire T, Øye G. Microfluidic tools for studying coalescence of crude oil droplets in produced water. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Equilibrium partitioning of naphthenic acids and bases and their consequences on interfacial properties. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Rodriguez-Hernandez MC, Flores-Chaparro CE, Rangel-Mendez JR. Influence of dissolved organic matter and oil on the biosorption of BTEX by macroalgae in single and multi-solute systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20922-20933. [PMID: 28721623 DOI: 10.1007/s11356-017-9672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The effect of dissolved organic matter (DOM) and oil on the removal of the water-soluble compounds benzene, toluene, ethylbenzene, and xylene isomers (BTEX) by two low-cost biosorbents Macrocystis pyrifera and Ulva expansa) was evaluated. DOM decreased the adsorption capacity of toluene, ethylbenzene, and xylenes of the two biosorbents. In contrast, the removal of benzene increased under the same conditions in single and multi-solute systems: this effect was dominant in U. expansa biomass treatments. In the presence of DOM and oil in solutions, the removal of BTEX notoriously increased, being oil that contributed the most. Solubility and hydrophobicity of pollutants played a key role in the adsorption process. The attractions between BTEX molecules and biosorbents were governed by π-π and hydrophobic interactions. Affinities of biosorbents for BTEX were mainly in the order of X > E > T > B. The Langmuir and Sips equations adjusted the adsorption isotherms for BTEX biosorption in deionized and natural water samples, but in the case of oily systems, the Freundlich equation seemed to have a better fit. The biosorption processes followed a pseudo-second-order rate in all the cases.
Collapse
Affiliation(s)
- Mayra Cecilia Rodriguez-Hernandez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C, Camino a la Presa San José 2055, Col. Lomas 4a Sección, 78216, San Luis Potosi, SLP, Mexico
| | - Carlos E Flores-Chaparro
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C, Camino a la Presa San José 2055, Col. Lomas 4a Sección, 78216, San Luis Potosi, SLP, Mexico
| | - Jose Rene Rangel-Mendez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C, Camino a la Presa San José 2055, Col. Lomas 4a Sección, 78216, San Luis Potosi, SLP, Mexico.
| |
Collapse
|