1
|
Folgueras MB, Gutiérrez-Trashorras AJ, Laine-Cuervo G, Ríos-Fernández JC. The relevant effect of marine salt and epiphytes on Posidonia oceanica waste pyrolysis: Removal of SO 2/HCl emissions and promotion of O/HCOOH formation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:101-113. [PMID: 38603994 DOI: 10.1016/j.wasman.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Significant quantities of Posidonia oceanica deposit on some beaches and coastlines every year, which generates high costs associated with the disposal of this waste. Pyrolysis may be an adequate way for its valorization. However, it would imply to know how the process takes place and if the removal of its natural detrital inorganic matter (epiphytes, marine salt and sand) is necessary, which are the objectives of this research. Pyrolysis by thermogravimetry-mass spectrometry was carried out on both the washed and unwashed samples. During this waste pyrolysis, the following occurs: (i) the high alkali metal chloride content promotes fragmentation reactions of carbohydrates and O formation, which increases HCOOH intensities at temperatures between 250 and 360 °C; (ii) from 500 °C to 650 °C, Fe2O3 and decomposition of carbonates seem to be involved in reactions that produce O release and steam and CO2 reforming of hydrocarbons and oxygenated organic compounds with H2 generation; (iii) from 650 °C to 750 °C, Fe2O3, high alkali metal content and carbonate decomposition generate char gasification, an increase in O release, SO2 capture and HCOOH formation. In general, the abundance of inorganic matter (chlorides, carbonates, etc.) minimizes the release of various compounds during pyrolysis, including SO2 and HCl, while increasing HCOOH production. Thus, this high content of inorganic matter may represent an advantage for its pyrolysis, producing value-added chemical products with a reduced environmental impact. Therefore, this study may be the starting point for defining the optimal pyrolysis conditions for this waste valorisation.
Collapse
Affiliation(s)
- M B Folgueras
- Department of Energy, University of Oviedo, Polytechnic School of Mieres, c/ Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
| | - Antonio J Gutiérrez-Trashorras
- Department of Energy, University of Oviedo, Polytechnic School of Engineering of Gijón, Campus de Viesques, 33203 Gijón, Asturias, Spain
| | - G Laine-Cuervo
- Department of Energy, University of Oviedo, Polytechnic School of Mieres, c/ Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
| | - Juan Carlos Ríos-Fernández
- Department of Energy, University of Oviedo, Polytechnic School of Mieres, c/ Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain; Department of Energy, University of Oviedo, Polytechnic School of Engineering of Gijón, Campus de Viesques, 33203 Gijón, Asturias, Spain.
| |
Collapse
|
2
|
Taylor CJ, Seki H, Dannheim FM, Willis MJ, Clemens G, Taylor BA, Chamberlain TW, Bourne RA. An automated computational approach to kinetic model discrimination and parameter estimation. REACT CHEM ENG 2021; 6:1404-1411. [PMID: 34354841 PMCID: PMC8315272 DOI: 10.1039/d1re00098e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/07/2021] [Indexed: 01/15/2023]
Abstract
We herein report experimental applications of a novel, automated computational approach to chemical reaction network (CRN) identification. This report shows the first chemical applications of an autonomous tool to identify the kinetic model and parameters of a process, when considering both catalytic species and various integer and non-integer orders in the model's rate laws. This kinetic analysis methodology requires only the input of the species within the chemical system (starting materials, intermediates, products, etc.) and corresponding time-series concentration data to determine the kinetic information of the chemistry of interest. This is performed with minimal human interaction and several case studies were performed to show the wide scope and applicability of this process development tool. The approach described herein can be employed using experimental data from any source and the code for this methodology is also provided open-source. We herein report experimental applications of a novel, automated computational approach to chemical reaction network (CRN) identification.![]()
Collapse
Affiliation(s)
- Connor J Taylor
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds Leeds LS2 9JT UK
| | - Hikaru Seki
- Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | | | - Mark J Willis
- School of Engineering, University of Newcastle Newcastle upon Tyne NE1 7RU UK
| | - Graeme Clemens
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield UK
| | - Brian A Taylor
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield UK
| | - Thomas W Chamberlain
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds Leeds LS2 9JT UK
| | - Richard A Bourne
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
3
|
Ashraf C, Pfaendtner J. Assessing the Performance of Various Stochastic Optimization Methods on Chemical Kinetic Modeling of Combustion. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chowdhury Ashraf
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Hudzik JM, Bozzelli JW, Asatryan R, Ruckenstein E. OH-Initiated Reactions of para-Coumaryl Alcohol Relevant to the Lignin Pyrolysis. Part III. Kinetics of H-Abstraction by H, OH, and CH 3 Radicals. J Phys Chem A 2020; 124:4905-4915. [PMID: 32432474 DOI: 10.1021/acs.jpca.9b11898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lignin is the most complex component of biomass, and development of a detailed chemical kinetic model for biomass pyrolysis mainly relies on the understanding of the lignin decomposition kinetics. para-Coumaryl alcohol (p-CMA, HOPh-CH═CH-CH2OH), the focus of our analysis, is the simplest of the lignin monomers (monolignols) containing a typical side-chain double bond and both alkyl- and phenolic-type OH-groups. In parts I and II of our work (Asatryan, R. J. Phys. Chem. A 2019, 123, 2570-2585; Hudzik, J. M. J. Phys. Chem. A 2020, current issue), we created a detailed potential energy surface (PES) and performed a kinetic analysis of chemically activated, unimolecular, and bimolecular reactions pathways for p-CMA + OH. Reaction pathways analyzed include dissociation, intramolecular abstraction, group transfer, and elimination processes. The α- and β-carbon addition reactions generate 1,3- (RA1) and 1,2-diol (RB1) adduct radicals, respectively. Well depths are approximately 29 and 41 kcal/mol below the p-CMA + OH entrance level. Kinetic analysis aides in determining the major pathways for our conventional and fractional pyrolysis experiments. The current paper focuses on the H-abstraction reactions via H, OH, and CH3 light ("pool") radicals from p-CMA. The thermochemical properties of all stable, radical, and transition-state species were determined using the ωB97XD density functional theory (DFT) and higher-level CBS-QB3 composite methods. Barrier heights from the prereaction complexes, for OH-radical abstractions, to the transition states for the propanoid side chain are compared to the model H-abstraction reactions of allyl alcohol (AA) with OH and p-CMA with H and CH3 radicals. The lowest-energy, most stable, p-CMA radical formed is at the C9 allylic position (p-CMA-C9j) with exothermicity of 26.63, 41.32, and 27.34 kcal/mol for H, OH, and CH3, respectively. For OH-radical abstraction at this position, our findings are consistent with corresponding data on AA + OH at 37.44 kcal/mol and similar to that of RB1. A similar stable radical with an exothermicity of 34.95 kcal/mol occurs for the phenol hydroxyl group, generating the p-CMA-O4j radical. H-abstraction pathways are considered in relation to other major pathways previously considered for p-CMA + OH reactions including H-atom shifts, dehydration, and β-scission reactions. Derived rate coefficients for substituted phenols can be utilized in detailed kinetic models for lignin/biomass pyrolysis.
Collapse
Affiliation(s)
- Jason M Hudzik
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joseph W Bozzelli
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Rubik Asatryan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New Jersey 14226, United States
| | - Eli Ruckenstein
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New Jersey 14226, United States
| |
Collapse
|
5
|
Hudzik JM, Barekati-Goudarzi M, Khachatryan L, Bozzelli JW, Ruckenstein E, Asatryan R. OH-Initiated Reactions of para-Coumaryl Alcohol Relevant to the Lignin Pyrolysis. Part II. Kinetic Analysis. J Phys Chem A 2020; 124:4875-4904. [DOI: 10.1021/acs.jpca.9b11894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason M. Hudzik
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | | | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Joseph W. Bozzelli
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Eli Ruckenstein
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14226, United States
| | - Rubik Asatryan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14226, United States
| |
Collapse
|
6
|
Terrell E, Dellon LD, Dufour A, Bartolomei E, Broadbelt LJ, Garcia-Perez M. A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05744] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Evan Terrell
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Lauren D. Dellon
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Anthony Dufour
- LRGP, CNRS, Universite de Lorraine, ENSIC, 54000 Nancy, France
| | | | - Linda J. Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Manuel Garcia-Perez
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
7
|
Kulik HJ. MODELING MECHANOCHEMISTRY FROM FIRST PRINCIPLES. REVIEWS IN COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1002/9781119518068.ch6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes (Basel) 2018. [DOI: 10.3390/pr6080098] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A complete bibliometric analysis of the Scopus database was performed to identify the research trends related to lignin valorization from 2000 to 2016. The results from this analysis revealed an exponentially increasing number of publications and a high relevance of interdisciplinary collaboration. The simultaneous valorization of the three main components of lignocellulosic biomass (cellulose, hemicellulose, and lignin) has been revealed as a key aspect and optimal pretreatment is required for the subsequent lignin valorization. Research covers the determination of the lignin structure, isolation, and characterization; depolymerization by thermal and thermochemical methods; chemical, biochemical and biological conversion of depolymerized lignin; and lignin applications. Most methods for lignin depolymerization are focused on the selective cleavage of the β-O-4 linkage. Although many depolymerization methods have been developed, depolymerization with sodium hydroxide is the dominant process at industrial scale. Oxidative conversion of lignin is the most used method for the chemical lignin upgrading. Lignin uses can be classified according to its structure into lignin-derived aromatic compounds, lignin-derived carbon materials and lignin-derived polymeric materials. There are many advances in all approaches, but lignin-derived polymeric materials appear as a promising option.
Collapse
|
9
|
Furutani Y, Dohara Y, Kudo S, Hayashi JI, Norinaga K. Computational Study on the Thermal Decomposition of Phenol-Type Monolignols. INT J CHEM KINET 2018. [DOI: 10.1002/kin.21164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuki Furutani
- Interdisciplinary Graduate School of Engineering Sciences; Kyushu University; Kasuga Fukuoka 816-8580 Japan
| | - Yuki Dohara
- Interdisciplinary Graduate School of Engineering Sciences; Kyushu University; Kasuga Fukuoka 816-8580 Japan
| | - Shinji Kudo
- Institute for Materials Chemistry and Engineering; Kyushu University; Kasuga Fukuoka 816-8580 Japan
| | - Jun-Ichiro Hayashi
- Institute for Materials Chemistry and Engineering; Kyushu University; Kasuga Fukuoka 816-8580 Japan
- Research and Education Centre of Carbon Resources; Kyushu University; Kasuga Fukuoka 816-8580 Japan
| | - Koyo Norinaga
- Department of Chemical Systems Engineering; Graduate School of Engineering; Nagoya University; Nagoya 464-8603 Japan
| |
Collapse
|
10
|
Furutani Y, Dohara Y, Kudo S, Hayashi JI, Norinaga K. Theoretical Study on Elementary Reaction Steps in Thermal Decomposition Processes of Syringol-Type Monolignol Compounds. J Phys Chem A 2018; 122:822-831. [PMID: 29236494 DOI: 10.1021/acs.jpca.7b09450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper theoretically investigated a large number of reaction pathways and kinetics to describe the vapor-phase pyrolytic behavior of several syringol-type monolignol compounds that are derived from the primary pyrolysis of lignin: 1-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-en-1-one (HDPP), sinapyl alcohol, 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)propan-1-one (HHDPP), 1-(4-hydroxy-3,5-dimethoxyphenyl)propane-1,3-diol (HDPPD), and syringol. The possible pyrolytic pathways involving unimolecular decomposition, addition, and abstraction reactions were investigated by comparing the energy barriers calculated at the B3LYP/6-311++G(d,p) level. In the proposed pathways, all syringol-type monolignols containing a side chain undergo its cleavage to form syringol through the formation of syringaldehyde or 4-vinylsyringol. Syringol is then converted into two products: (a) pyrogallol via the homolysis of the O-CH3 bond and hydrogenation or (b) guaiacol via addition of an H atom with a carbon bearing methoxyl group in syrignol and the subsequent demethoxylation. The pyrolytic pathways of pyrogallol are classified into two processes: (a) the concerted dehydrogenation of the two hydroxyl H atoms and the unimolecular decomposition to produce acetylene (C2H2), ethynol (C2HOH), and CO or (b) the displacement of an OH with H to produce catechol and resorcinol. Additionally, HDPP undergoes O-CH3 bond cleavage to form but-1-en-3-yne. The high-pressure limit rate constants for all the proposed elementary reaction steps were evaluated on the basis of transition state theory.
Collapse
Affiliation(s)
| | | | | | | | - Koyo Norinaga
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University , Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
11
|
Chen C, Zhao L, Wang J, Lin S. Reactive Molecular Dynamics Simulations of Biomass Pyrolysis and Combustion under Various Oxidative and Humidity Environments. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01714] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lingling Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jingfan Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Shangchao Lin
- Department of Mechanical Engineering, Materials Science & Engineering Program, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
12
|
Application of machine learning to pyrolysis reaction networks: Reducing model solution time to enable process optimization. Comput Chem Eng 2017. [DOI: 10.1016/j.compchemeng.2017.04.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Mar BD, Kulik HJ. Depolymerization Pathways for Branching Lignin Spirodienone Units Revealed with ab Initio Steered Molecular Dynamics. J Phys Chem A 2017; 121:532-543. [PMID: 28005362 DOI: 10.1021/acs.jpca.6b11414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lignocellulosic biomass is an abundant, rich source of aromatic compounds, but direct utilization of raw lignin has been hampered by both the high heterogeneity and variability of linking bonds in this biopolymer. Ab initio steered molecular dynamics (AISMD) has emerged both as a fruitful direct computational screening approach to identify products that occur through mechanical depolymerization (i.e., in sonication or ball-milling) and as a sampling approach. By varying the direction of force and sampling over 750 AISMD trajectories, we identify numerous possible pathways through which lignin depolymerization may occur in pyrolysis or through catalytic depolymerization as well. Here, we present eight unique major depolymerization pathways discovered via AISMD for the recently characterized spirodienone lignin branching linkage that may comprise around 10% weight of all lignin in some softwoods. We extract representative trajectories from AISMD and carry out reaction pathway analysis to identify energetically favorable pathways for lignin depolymerization. Importantly, we identify dynamical effects that could not be observed through more traditional calculations of bond dissociation energies. Such effects include thermodynamically favorable recovery of aromaticity in the dienone ring that leads to near-barrierless subsequent ether cleavage and hydrogen-bonding effects that stabilize newly formed radicals. Some of the most stable spirodienone fragments that reside at most 1 eV above the reactant structure are formed with only 2 eV barriers for C-C bond cleavage, suggesting key targets for catalyst design to drive targeted depolymerization of lignin.
Collapse
Affiliation(s)
- Brendan D Mar
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|