1
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Poloneeva D, Datta SJ, Sicat R, Khairova R, Garzon-Tovar L, Bavykina A, Eddaoudi M, Gascon J. Advancing Membrane Technology: Ordered Macroporous ZIF-67 as a Filler in Mixed Matrix Membranes for Enhanced Propylene/Propane Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309127. [PMID: 38554016 DOI: 10.1002/smll.202309127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/13/2024] [Indexed: 04/01/2024]
Abstract
Conventional separation technologies for valuable commodities require substantial energy, accounting for 10%-15% of global consumption. Mixed-matrix membranes (MMMs) offer a promising solution by combining processable polymers with selective inorganic fillers. Here, the potential of using ordered microporous structured materials is demonstrated as MMM fillers. The use of ordered macroporous ZIF-67 in combination with the well-known 6FDA-DAM polymer leads to superior performance in the important separation of propylene from propane. The enhanced performance can be rationalized with the help of advanced microscopy, which demonstrates that the polymer is able to penetrate the macroporous network around which the MOF (Metal-Organic Framework) is synthesized, resulting in a much better interphase between the two components and the homogeneous distribution of the filler, even at high loadings.
Collapse
Affiliation(s)
- Daria Poloneeva
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Shuvo Jit Datta
- Functional Materials Design Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Ronell Sicat
- KAUST Visualization Core Lab (KVL), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Rushana Khairova
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Luis Garzon-Tovar
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Anastasiya Bavykina
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jorge Gascon
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
3
|
Mashhadikhan S, Amooghin AE, Masoomi MY, Sanaeepur H, Garcia H. Defect-Engineered Metal-Organic Framework/Polyimide Mixed Matrix Membrane for CO 2 Separation. Chemistry 2024; 30:e202401181. [PMID: 38700479 DOI: 10.1002/chem.202401181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Defect-engineered metal-organic frameworks (MOFs) with outstanding structural and chemical features have become excellent candidates for specific separation applications. The introduction of structural defects in MOFs as an efficient approach to manipulate their functionality provides excellent opportunities for the preparation of MOF-based mixed matrix membranes (MMMs). However, the use of this strategy to adjust the properties and develop the separation performance of gas separation membranes is still in its early stages. Here, a novel defect-engineered MOF (quasi ZrFum or Q-ZrFum) was synthesized via a controlled thermal deligandation process and incorporated into a CO2-philic 6FDA-durene polyimide (PI) matrix to form Q-ZrFum loaded MMMs. Defect-engineered MOFs and fabricated MMMs were investigated regarding their characteristic properties and separation performance. The incorporation of defects into the MOF structure increases the pore size and provides unsaturated active metal sites that positively affect CO2 molecule transport. The interfacial compatibility between the Q-ZrFum particles and the PI matrix increases via the deligandation process, which improves the mechanical strength of Q-ZrFum loaded membranes. MMM containing 5 wt.% of defect-engineered Q-ZrFum exhibits excellent CO2 permeability of 1308 Barrer, which increased by 99 % compared to the pure PI membrane (656 Barrer) at a feed pressure of 2 bar. CO2/CH4 and CO2/N2 selectivity reached 44 and 26.6 which increased by about 70 and 16 %, respectively. This study emphasizes that defect-engineered MOFs can be promising candidates for use as fillers in the preparation of MMMs for the future development of membrane-based gas separation applications.
Collapse
Affiliation(s)
- Samaneh Mashhadikhan
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | | | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Hermenegildo Garcia
- Instituto de Tecnología Química, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Universitat Politècnica de València, Av. De los naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
4
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
5
|
Barooah M, Kundu S, Kumar S, Katare A, Borgohain R, Uppaluri RVS, Kundu LM, Mandal B. New generation mixed matrix membrane for CO 2 separation: Transition from binary to quaternary mixed matrix membrane. CHEMOSPHERE 2024; 354:141653. [PMID: 38485000 DOI: 10.1016/j.chemosphere.2024.141653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Contemporary advances in material development associated with membrane gas separation refer to the cost-effective fabrication of high-performance, defect-free mixed matrix membranes (MMMs). For clean energy production, natural gas purification, and CO2 capture from flue gas systems, constituting a functional integration of polymer matrix and inorganic filler materials find huge applications. The broad domain of research and development of MMMs focused on the selection of appropriate materials, inexpensive membrane fabrication, and comparative study with other gas separation membranes for real-world applications. This study addressed a comprehensive review of the advanced MMMs wrapping various facets of membrane material selection; polymer and filler particle morphology and compatibility between the phases and the relevance of several fillers in the assembly of MMMs are analyzed. Further, the research on binary MMMs, their problems, and solutions to overcome these challenges have also been discussed. Finally, the future directions and scope of work on quaternary MMM are scrutinized in the article.
Collapse
Affiliation(s)
- Mridusmita Barooah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Sukanya Kundu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Shubham Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Aviti Katare
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Rajashree Borgohain
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Ramagopal V S Uppaluri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Lal Mohan Kundu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Zhang C, Fan L, Kang Z, Sun D. Solution processing of crystalline porous material based membranes for CO 2 separation. Chem Commun (Camb) 2024. [PMID: 38273772 DOI: 10.1039/d3cc05545k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The carbon emission problem is a significant challenge in today's society, which has led to severe global climate issues. Membrane-based separation technology has gained considerable interest in CO2 separation due to its simplicity, environmental friendliness, and energy efficiency. Crystalline porous materials (CPMs), such as zeolites, metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, and porous organic cages, hold great promise for advanced CO2 separation membranes because of their ordered and customizable pore structures. However, the preparation of defect-free and large-area crystalline porous material (CPM)-based membranes remains challenging, limiting their practical use in CO2 separation. To address this challenge, the solution-processing method, commonly employed in commercial polymer preparation, has been adapted for CPM membranes in recent years. Nanosheets, spheres, molecular cages, and even organic monomers, depending on the CPM type, are dissolved in suitable solvents and processed into continuous membranes for CO2 separation. This feature article provides an overview of the recent advancements in the solution processing of CPM membranes. It summarizes the differences among the solution-processing methods used for forming various CPM membranes, highlighting the key factors for achieving continuous membranes. The article also summarizes and discusses the CO2 separation performance of these membranes. Furthermore, it addresses the current issues and proposes future research directions in this field. Overall, this feature article aims to shed light on the development of solution-processing techniques for CPM membranes, facilitating their practical application in CO2 separation.
Collapse
Affiliation(s)
- Caiyan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Lili Fan
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zixi Kang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
7
|
Lee TH, Lee BK, Yoo SY, Lee H, Wu WN, Smith ZP, Park HB. PolyMOF nanoparticles constructed from intrinsically microporous polymer ligand towards scalable composite membranes for CO 2 separation. Nat Commun 2023; 14:8330. [PMID: 38097615 PMCID: PMC10721836 DOI: 10.1038/s41467-023-44027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Integrating different modification strategies into a single step to achieve the desired properties of metal-organic frameworks (MOFs) has been very synthetically challenging, especially in developing advanced MOF/polymer mixed matrix membranes (MMMs). Herein, we report a polymer-MOF (polyMOF) system constructed from a carboxylated polymer with intrinsic microporosity (cPIM-1) ligand. This intrinsically microporous ligand could coordinate with metals, leading to ~100 nm-sized polyMOF nanoparticles. Compared to control MOFs, these polyMOFs exhibit enhanced ultramicroporosity for efficient molecular sieving, and they have better dispersion properties in casting solutions to prepare MMMs. Ultimately, integrating coordination chemistries through the cPIM-1 and polymer-based functionality into porous materials results in polyMOF/PIM-1 MMMs that display excellent CO2 separation performance (surpassing the CO2/N2 and CO2/CH4 upper bounds). In addition to exploring the physicochemical and transport properties of this polyMOF system, scalability has been demonstrated by converting the developed MMM material into large-area (400 cm2) thin-film nanocomposite (TFN) membranes.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Byung Kwan Lee
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seung Yeon Yoo
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyunhee Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wan-Ni Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Chen X, Wang N, Chen G, Wang Z, Liu G, Zhou R, Jin W. Zeolite/polyimide mixed-matrix membranes with enhanced natural gas purification performance: Importance of filler structural integrity. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Li H, Zhuang S, Zhao B, Yu Y, Liu Y. Visualization of the gas permeation in core–shell MOF/Polyimide mixed matrix membranes and structural optimization based on finite element equivalent simulation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Khurram AR, Rafiq S, Tariq A, Jamil A, Iqbal T, Mahmood H, Mehdi MS, Abdulrahman A, Ali A, Akhtar MS, Asif S. Environmental remediation through various composite membranes moieties: Performances and thermomechanical properties. CHEMOSPHERE 2022; 309:136613. [PMID: 36183888 DOI: 10.1016/j.chemosphere.2022.136613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Pollution harms ecosystems and poses a serious threat to human health around the world through direct or indirect effects on air, water, and land. The importance of remediating effluents is paramount to reducing environmental concerns. CO2 emissions are removed efficiently and efficaciously with mixed matrix membranes (MMMs), which are viable replacements for less efficient and costly membranes. In the field of membrane technology, MMMs are advancing rapidly due to their good separation properties. The selection of filler to be incorporated in mixed matrix membranes is very considered very important. There has been considerable interest in MOFs, carbon nanotubes (CNTs), ionic liquids (ILs), carbon molecular sieves (CMSs), sulfonated fillers (SFs), and layered silicates (LSs) as inorganic fillers for improving the properties of mixed matrix membranes. These fillers promise superb results and long durability for mixed matrix membranes based on them. The purpose of this review is to review different fillers used in MMMs for improving separation properties, limitations, and thermomechanical properties for environmental control and remediation.
Collapse
Affiliation(s)
- Abdul Rehman Khurram
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Sikander Rafiq
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan; Department of Food Engineering and Biotechnology, University of Engineering and Technology, Lahore, New Campus, Pakistan.
| | - Alisha Tariq
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Asif Jamil
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Hamayoun Mahmood
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Muhammad Shozab Mehdi
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan
| | - Aymn Abdulrahman
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Saira Asif
- Sustainable Process Integration Laboratory, SPIL, NETME Centra, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, Brno, 616 00, Czech Republic.
| |
Collapse
|
11
|
Dai Y, Niu Z, Luo W, Wang Y, Mu P, Li J. A review on the recent advances in composite membranes for CO2 capture processes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
13
|
Loloei M, Kaliaguine S, Rodrigue D. Postsynthetic Modification of Zn/Co-ZIF by 3,5-Diamino-1,2,4-triazole for Improved MOF/Polyimide Interface in CO 2–Selective Mixed Matrix Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mahsa Loloei
- Department of Chemical Engineering, Université Laval, Québec, Québec G1 V 0A6, Canada
| | - Serge Kaliaguine
- Department of Chemical Engineering, Université Laval, Québec, Québec G1 V 0A6, Canada
| | - Denis Rodrigue
- Department of Chemical Engineering, Université Laval, Québec, Québec G1 V 0A6, Canada
| |
Collapse
|
14
|
Loloei M, Kaliaguine S, Rodrigue D. CO2-Selective mixed matrix membranes of bimetallic Zn/Co-ZIF vs. ZIF-8 and ZIF-67. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Hu Z, Miu J, Zhang X, Jia M, Yao J.
UiO‐66‐NH
2
particle size effects on gas separation performance of cellulose acetate composite membranes. J Appl Polym Sci 2022. [DOI: 10.1002/app.52810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhirong Hu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Jiayu Miu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Xiong‐Fei Zhang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Mingmin Jia
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory for Environment Functional Materials Huaiyin Normal University Huaian China
| | - Jianfeng Yao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| |
Collapse
|
16
|
Morphology Effect of Zinc Oxide Nanoparticles on the Gas Separation Performance of Polyurethane Mixed Matrix Membranes for CO2 Recovery from CH4, O2, and N2. MEMBRANES 2022; 12:membranes12060577. [PMID: 35736291 PMCID: PMC9230613 DOI: 10.3390/membranes12060577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
Abstract
The effect of the morphology and content of zinc oxide nanoparticles (ZnO-NPs) on the physicochemical, mechanical, and gas transport properties of the polyurethane (PU) mixed matrix membranes (MMMs) with respect to CO2 recovery from CH4, O2, and N2 was studied. The MMMs based on PU with spherical and rod-shaped ZnO-NPs at various loadings, namely, 0.05, 0.1, 0.5, 1, and 2 wt. %, were prepared with membrane density control and studied using AFM, wettability measurements, surface free energy calculation, gas separation and mechanical testing. To evaluate the resistance of the ZnO-NPs to agglomeration in the polymer solutions, zeta potential was determined. The ZnO-NPs with average cross sectional size of 30 nm were obtained by plasma-enhanced chemical vapor deposition (PECVD) from elemental high-purity zinc in a zinc-oxygen-hydrogen plasma-forming gas mixture. It was established that the spherical ZnO-NPs are promising to improve the gas performance of PU-based MMMs for CO2 recovery from natural gas, while the rod-shaped NPs better demonstrate their potential in capturing CO2 in flue gases.
Collapse
|
17
|
PAN electrospun nanofiber skeleton induced MOFs continuous distribution in MMMs to boost CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Shi Y, Wu S, Wang Z, Bi X, Huang M, Zhang Y, Jin J. Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119449] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Quantifying diffusion of organic liquids in a MOF component of MOF/Polymer mixed-matrix membranes by high field NMR. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
van Essen M, Thür R, van den Akker L, Houben M, Vankelecom IF, Nijmeijer K, Borneman Z. Tailoring the separation performance of ZIF-based mixed matrix membranes by MOF-matrix interfacial compatibilization. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Loloei M, Kaliaguine S, Rodrigue D. Mixed matrix membranes based on NH2-MIL-53 (Al) and 6FDA-ODA polyimide for CO2 separation: Effect of the processing route on improving MOF-polymer interfacial interaction. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118786] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Li S, Liu Y, Wong DA, Yang J. Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO 2 Separation. Polymers (Basel) 2021; 13:2539. [PMID: 34372141 PMCID: PMC8348380 DOI: 10.3390/polym13152539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Since the second industrial revolution, the use of fossil fuels has been powering the advance of human society. However, the surge in carbon dioxide (CO2) emissions has raised unsettling concerns about global warming and its consequences. Membrane separation technologies have emerged as one of the major carbon reduction approaches because they are less energy-intensive and more environmentally friendly compared to other separation techniques. Compared to pure polymeric membranes, mixed matrix membranes (MMMs) that encompass both a polymeric matrix and molecular sieving fillers have received tremendous attention, as they have the potential to combine the advantages of both polymers and molecular sieves, while cancelling out each other's drawbacks. In this review, we will discuss recent advances in the development of MMMs for CO2 separation. We will discuss general mechanisms of CO2 separation in an MMM, and then compare the performances of MMMs that are based on zeolite, MOF, metal oxide nanoparticles and nanocarbons, with an emphasis on the materials' preparation methods and their chemistries. As the field is advancing fast, we will particularly focus on examples from the last 5 years, in order to provide the most up-to-date overview in this area.
Collapse
Affiliation(s)
- Sipei Li
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| | | | | | - John Yang
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| |
Collapse
|
24
|
Zhao Q, Zhao DL, Nai MH, Chen SB, Chung TS. Nanovoid-Enhanced Thin-Film Composite Reverse Osmosis Membranes Using ZIF-67 Nanoparticles as a Sacrificial Template. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33024-33033. [PMID: 34235913 DOI: 10.1021/acsami.1c07673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, nanovoid-enhanced thin-film composite (TFC) membranes have been successfully fabricated using ZIF-67 nanoparticles as the sacrificial template. By incorporating different amounts of ZIF-67 during interfacial polymerization, the resultant TFC membranes can have different degrees of nanovoids after self-degradation of ZIF-67 in water, consequently influencing their physiochemical properties and separation performance. Nanovoid structures endow the membranes with additional passages for water molecules. Thus, all the newly developed TFC membranes exhibit better separation performance for brackish water reverse osmosis (BWRO) desalination than the pristine TFC membrane. The membrane made from 0.1 wt % ZIF-67 shows a water permeance of 2.94 LMH bar-1 and a salt rejection of 99.28% when being tested under BWRO at 20 bar. This water permeance is 53% higher than that of the pristine TFC membrane with the salt rejection well maintained.
Collapse
Affiliation(s)
- Qipeng Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Die Ling Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Shing Bor Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
25
|
Huang M, Wang Z, Lu K, Fang W, Bi X, Zhang Y, Jin J. In-situ generation of polymer molecular sieves in polymer membranes for highly selective gas separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Review: Mixed-Matrix Membranes with CNT for CO 2 Separation Processes. MEMBRANES 2021; 11:membranes11060457. [PMID: 34205664 PMCID: PMC8234234 DOI: 10.3390/membranes11060457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
The membranes' role is of supreme importance in the separation of compounds under different phases of matter. The topic addressed here is based on the use of membranes on the gases separation, specifically the advantages of mixed-matrix membranes (MMMs) when using carbon nanotubes as fillers to separate carbon dioxide (CO2) from other carrier gas. MMMs consist of a polymer support with additive fillers to improve their efficiency by increasing both selectivity and permeability. The most promising fillers in the MMM development are nanostructured molecules. Due to the good prospects of carbon nanotubes (CNTs) as MMM fillers, this article aims to concentrate the advances and developments of CNT-MMM to separate gases, such as CO2. The influence of functionalized CNT or mixtures of CNT with additional materials such as zeolites, hydrogel and, graphene sheets on membranes performance is highlighted in the present work.
Collapse
|
27
|
Wang Z, Yuan J, Li R, Zhu H, Duan J, Guo Y, Liu G, Jin W. ZIF-301 MOF/6FDA-DAM polyimide mixed-matrix membranes for CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118431] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Zhang B, Qiao J, Dong C, Yi C, Qi S, Yang B. Dibenzo-21-crown-7-ether contained 6FDA-based polyimide membrane with improved gas selectivity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Li M, Zheng Z, Zhang Z, Li N, Liu S, Chi Z, Xu J, Zhang Y. "All Polyimide" Mixed Matrix Membranes for High Performance Gas Separation. Polymers (Basel) 2021; 13:1329. [PMID: 33921599 PMCID: PMC8073420 DOI: 10.3390/polym13081329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 11/22/2022] Open
Abstract
To improve the interfacial compatibility of mixed matrix membranes (MMMs) for gas separation, microporous polyimide particle (AP) was designed, synthesized, and introduced into intrinsic microporous polyimide matrix (6FDA-Durene) to form "all polyimide" MMMs. The AP fillers showed the feature of thermal stability, similar density with polyimide matrix, high porosity, high fractional free volume, large microporous dimension, and interpenetrating network architecture. As expected, the excellent interfacial compatibility between 6FDA-Durene and AP without obvious agglomeration even at a high AP loading of 10 wt.% was observed. As a result, the CO2 permeability coefficient of MMM with AP loading as low as 5 wt.% reaches up to 1291.13 Barrer, which is 2.58 times that of the pristine 6FDA-Durene membrane without the significant sacrificing of ideal selectivity of CO2/CH4. The improvement of permeability properties is much better than that of the previously reported MMMs, where high filler content is required to achieve a high permeability increase but usually leads to significant agglomeration or phase separation of fillers. It is believed that the excellent interfacial compatibility between the PI fillers and the PI matrix induce the effective utilization of porosity and free volume of AP fillers during gas transport. Thus, a higher diffusion coefficient of MMMs has been observed than that of the pristine PI membrane. Furthermore, the rigid polyimide fillers also result in the excellent anti-plasticization ability for CO2. The MMMs with a 10 wt.% AP loading shows a CO2 plasticization pressure of 300 psi.
Collapse
Affiliation(s)
- Maijun Li
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| | - Zhibo Zheng
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| | - Zhiguang Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;
| | - Nanwen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| | - Jiarui Xu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| | - Yi Zhang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| |
Collapse
|
30
|
Li N, Wang Z, Wang M, Gao M, Wu H, Zhao S, Wang J. Swelling-controlled positioning of nanofillers through a polyamide layer in thin-film nanocomposite membranes for CO2 separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Hu M, Shu Y, Kirillov A, Liu W, Yang L, Dou W. Epoxy Functional Composites Based on Lanthanide Metal-Organic Frameworks for Luminescent Polymer Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7625-7634. [PMID: 33533612 DOI: 10.1021/acsami.0c23030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The integration of metal-organic frameworks (MOF) into organic polymers represents a direct and effective strategy for developing innovative composite materials that combine the exceptional properties of MOFs with the robustness of organic polymers. However, the preparation of MOF@polymer hybrid composites requires an efficient dispersion and interaction of MOF particles with polymer matrices, which remains a significant challenge. In this work, a new simple and direct approach was applied for the development of Ln-MOF@polymer materials. A series of Ln-MOF@TGIC composites {Ln-MOF = [Ln(μ3-BTC)(H2O)6]n (Ln-BTC), where Ln = Eu, Tb, Eu0.05Tb0.95; H3BTC = 1,3,5-benzenetricarboxylic acid; TGIC = triglycidyl isocyanurate} were successfully obtained by applying a grinding method via the chemical bonding between uncoordinated carboxylate groups in Ln-BTC and epoxy groups in TGIC. The Ln-BTC@TGIC materials possess significant fluorescence characteristics with superior emission lifetimes and quantum yields if compared to parent Ln-MOFs. Interestingly, under the UV irradiation, a considerable color change from yellow in Eu0.05Tb0.95-BTC to red in Eu0.05Tb0.95-BTC@TGIC was observed. The energy-transfer mechanism was also rationalized by the density functional theory (DFT) calculations. The developed Ln-BTC@TGIC composites were further applied as functional fluorescent coatings for the fabrication, via a simple spraying method, of the flexible polyimide (PI) films, Ln-BTC@TGIC@PI. Thus, the present work unveils a new methodology and expands its applicability for the design and assembly of stable, multicomponent, and soft polymer materials with remarkable fluorescence properties.
Collapse
Affiliation(s)
- Mingyang Hu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ying Shu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Alexander Kirillov
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Weisheng Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lizi Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei Dou
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
32
|
Functionalized filler/synthesized 6FDA-Durene high performance mixed matrix membrane for CO2 separation. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Wu W, Su P, Li W. Mixed matrix membranes containing polymer‐embedded metal‐organic framework microspheres. AIChE J 2020. [DOI: 10.1002/aic.17028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wufeng Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment Jinan University Guangzhou China
| | - Pengcheng Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment Jinan University Guangzhou China
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment Jinan University Guangzhou China
| |
Collapse
|
34
|
Han G, Rodriguez KM, Qian Q, Smith ZP. Acid-Modulated Synthesis of High Surface Area Amine-Functionalized MIL-101(Cr) Nanoparticles for CO 2 Separations. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qihui Qian
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zachary P. Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Winarta J, Meshram A, Zhu F, Li R, Jafar H, Parmar K, Liu J, Mu B. Metal–organic framework
‐based mixed‐matrix
membranes for gas separation: An overview. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200122] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joseph Winarta
- School for Engineering of Matter, Transport, and Energy Arizona State University Tempe Arizona USA
| | - Amogh Meshram
- School for Engineering of Matter, Transport, and Energy Arizona State University Tempe Arizona USA
| | - Feifei Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Renjie Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Hasan Jafar
- School for Engineering of Matter, Transport, and Energy Arizona State University Tempe Arizona USA
| | - Kunj Parmar
- School for Engineering of Matter, Transport, and Energy Arizona State University Tempe Arizona USA
| | - Jichang Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Bin Mu
- School for Engineering of Matter, Transport, and Energy Arizona State University Tempe Arizona USA
| |
Collapse
|
36
|
Deng J, Dai Z, Deng L. Effects of the Morphology of the ZIF on the CO 2 Separation Performance of MMMs. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01946] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- School of Chemical, Biological and Material Engineering, University of Oklahoma, 73019 Norman, Oklahoma, United States
| | - Zhongde Dai
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- College of Architecture & Environment, Sichuan University, 610065 Chengdu, China
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
37
|
Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, Benedetti FM, Wu AX, Chi WS, Smith ZP. MOF-Based Membranes for Gas Separations. Chem Rev 2020; 120:8161-8266. [PMID: 32608973 DOI: 10.1021/acs.chemrev.0c00119] [Citation(s) in RCA: 466] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metal-organic frameworks (MOFs) represent the largest known class of porous crystalline materials ever synthesized. Their narrow pore windows and nearly unlimited structural and chemical features have made these materials of significant interest for membrane-based gas separations. In this comprehensive review, we discuss opportunities and challenges related to the formation of pure MOF films and mixed-matrix membranes (MMMs). Common and emerging separation applications are identified, and membrane transport theory for MOFs is described and contextualized relative to the governing principles that describe transport in polymers. Additionally, cross-cutting research opportunities using advanced metrologies and computational techniques are reviewed. To quantify membrane performance, we introduce a simple membrane performance score that has been tabulated for all of the literature data compiled in this review. These data are reported on upper bound plots, revealing classes of MOF materials that consistently demonstrate promising separation performance. Recommendations are provided with the intent of identifying the most promising materials and directions for the field in terms of fundamental science and eventual deployment of MOF materials for commercial membrane-based gas separations.
Collapse
Affiliation(s)
- Qihui Qian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick A Asinger
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Moon Joo Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Albert X Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Won Seok Chi
- School of Polymer Science and Engineering, Chonnam National University, Buk-gu, Gwangju 61186, Korea
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Ye C, Wu X, Wu H, Yang L, Ren Y, Wu Y, Liu Y, Guo Z, Zhao R, Jiang Z. Incorporating nano-sized ZIF-67 to enhance selectivity of polymers of intrinsic microporosity membranes for biogas upgrading. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Zhou B, Li Q, Zhang Q, Duan J, Jin W. Sharply promoted CO2 diffusion in a mixed matrix membrane with hierarchical supra-nanostructured porous coordination polymer filler. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Guan W, Dai Y, Dong C, Yang X, Xi Y. Zeolite imidazolate framework (ZIF)‐based mixed matrix membranes for CO
2
separation: A review. J Appl Polym Sci 2020. [DOI: 10.1002/app.48968] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Weixin Guan
- School of Chemical Engineering and TechnologyXi'an Jiaotong University Xi'an, 710049 Shaanxi China
- Panjin Institute of Industrial TechnologySchool of Chemical Engineering, Dalian University of Technology Panjin 124221 Liaoning China
| | - Yan Dai
- School of Chemical Engineering and TechnologyXi'an Jiaotong University Xi'an, 710049 Shaanxi China
- Panjin Institute of Industrial TechnologySchool of Chemical Engineering, Dalian University of Technology Panjin 124221 Liaoning China
| | - Chenyuan Dong
- Panjin Institute of Industrial TechnologySchool of Chemical Engineering, Dalian University of Technology Panjin 124221 Liaoning China
| | - Xiaochen Yang
- Panjin Institute of Industrial TechnologySchool of Chemical Engineering, Dalian University of Technology Panjin 124221 Liaoning China
| | - Yuan Xi
- Panjin Institute of Industrial TechnologySchool of Chemical Engineering, Dalian University of Technology Panjin 124221 Liaoning China
| |
Collapse
|
41
|
Chen T, Wang Q, Lyu J, Bai P, Guo X. Boron removal and reclamation by magnetic magnetite (Fe3O4) nanoparticle: An adsorption and isotopic separation study. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115930] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Wu X, Ren Y, Sui G, Wang G, Xu G, Yang L, Wu Y, He G, Nasir N, Wu H, Jiang Z. Accelerating CO
2
capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. AIChE J 2019. [DOI: 10.1002/aic.16800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xingyu Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| | - Guomin Sui
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| | - Guangzhe Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| | - Guangshuai Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| | - Leixin Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| | - Yingzhen Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| | - Nayab Nasir
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| |
Collapse
|
43
|
Wang F, Zheng T, Xiong R, Wang P, Ma J. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer. CHEMOSPHERE 2019; 233:524-531. [PMID: 31185336 DOI: 10.1016/j.chemosphere.2019.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Metal-organic frameworks (MOFs) addition into membranes is able to improve water flux without jeopardizing selectivity, which enhance the performance of reverse osmosis (RO) processes owing to its intrinsic physical and chemical properties, such as porosity structure and high compatibility with the polymer matrix. However, there were few studies about influences of nanoparticle size on MOFs-incorporated thin film nanocomposite (TFN) membranes. Here ZIF-8 particles with different average sizes (50, 150 and 400 nm) were synthesized and incorporated into organic monomer solution to fabricate TFN membranes for water desalination to investigate the membrane performance changed by nanomaterial size. Dispersion of ZIF-8 in selective layer during interfacial polymerization process was affected by particle size. The apparent morphology, roughness, and hydrophilicity of ZIF-8 modified TFN membranes were changed subsequently, which affected the water permeability, salt rejection and fouling resistance performance of the TFN membranes correspondingly. Our results showed that the TFN membrane comprising ZIF-8 with particle size of 50 nm had the best performance due to the highest dispersion in polyamide layer, revealing the importance of MOFs particle size in further investigation of MOFs-incorporated TFN membranes.
Collapse
Affiliation(s)
- Feihong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ruohan Xiong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
44
|
Najari S, Saeidi S, Gallucci F, Drioli E. Mixed matrix membranes for hydrocarbons separation and recovery: a critical review. REV CHEM ENG 2019. [DOI: 10.1515/revce-2018-0091] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
The separation and purification of light hydrocarbons are significant challenges in the petrochemical and chemical industries. Because of the growing demand for light hydrocarbons and the environmental and economic issues of traditional separation technologies, much effort has been devoted to developing highly efficient separation techniques. Accordingly, polymeric membranes have gained increasing attention because of their low costs and energy requirements compared with other technologies; however, their industrial exploitation is often hampered because of the trade-off between selectivity and permeability. In this regard, high-performance mixed matrix membranes (MMMs) are prepared by embedding various organic and/or inorganic fillers into polymeric materials. MMMs exhibit the advantageous and disadvantageous properties of both polymer and filler materials. In this review, the influence of filler on polymer chain packing and membrane sieving properties are discussed. Furthermore, the influential parameters affecting MMMs affinity toward hydrocarbons separation are addressed. Selection criteria for a suitable combination of polymer and filler are discussed. Moreover, the challenges arising from polymer/filler interactions are analyzed to allow for the successful implementation of this promising class of membranes.
Collapse
Affiliation(s)
- Sara Najari
- Department of Chemical Engineering , Tarbiat Modares University , Tehran 14115-114 , Iran
| | - Samrand Saeidi
- Department of Energy Engineering , Budapest University of Technology and Economics , Budapest , Hungary
| | - Fausto Gallucci
- Inorganic Membranes and Membrane Reactors, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry , Eindhoven , The Netherlands
| | - Enrico Drioli
- Institute on Membrane Technology, ITM-CNR , c/o University of Calabria , Via P. Bucci 17c , 87030 Rende (CS) , Italy
| |
Collapse
|
45
|
Maghami S, Sadeghi M, Mehrabani-Zeinabad A, Zarabadi M, Ghalei B. The Role of Interfacial Morphology in the Gas Transport Behavior of Nanocomposite Membranes: A Mathematical Modeling Approach. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01398] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Saeid Maghami
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Morteza Sadeghi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | | | - Mehdi Zarabadi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Behnam Ghalei
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
46
|
Wang Y, Wang X, Guan J, Yang L, Ren Y, Nasir N, Wu H, Chen Z, Jiang Z. 110th Anniversary: Mixed Matrix Membranes with Fillers of Intrinsic Nanopores for Gas Separation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01568] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanan Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyao Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jingyuan Guan
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Leixin Yang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yanxiong Ren
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nayab Nasir
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hong Wu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zan Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Membrane and Membrane Process, CNOOC Tianjin Chemical Research & Design Institute, Tianjin 300131, China
| | - Zhongyi Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
47
|
Reduced thermal rearrangement temperature via formation of zeolitic imidazolate framework (ZIF)-8-based nanocomposites for hydrogen purification. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Lee TH, Oh JY, Hong SP, Lee JM, Roh SM, Kim SH, Park HB. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: Importance of particle deposition. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Ayas İ, Yilmaz L, Kalipcilar H. The Gas Permeation Characteristics of Ternary Component Mixed Matrix Membranes Prepared Using ZIF-8 with a Large Range of Average Particle Size. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- İlhan Ayas
- Department of Chemical Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Levent Yilmaz
- Department of Chemical Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Halil Kalipcilar
- Department of Chemical Engineering, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
50
|
Ahmadi M, Janakiram S, Dai Z, Ansaloni L, Deng L. Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO₂ Separation: A Review. MEMBRANES 2018; 8:membranes8030050. [PMID: 30060592 PMCID: PMC6161244 DOI: 10.3390/membranes8030050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 11/29/2022]
Abstract
Application of conventional polymeric membranes in CO2 separation processes are limited by the existing trade-off between permeability and selectivity represented by the renowned upper bound. Addition of porous nanofillers in polymeric membranes is a promising approach to transcend the upper bound, owing to their superior separation capabilities. Porous nanofillers entice increased attention over nonporous counterparts due to their inherent CO2 uptake capacities and secondary transport pathways when added to polymer matrices. Infinite possibilities of tuning the porous architecture of these nanofillers also facilitate simultaneous enhancement of permeability, selectivity and stability features of the membrane conveniently heading in the direction towards industrial realization. This review focuses on presenting a complete synopsis of inherent capacities of several porous nanofillers, like metal organic frameworks (MOFs), Zeolites, and porous organic frameworks (POFs) and the effects on their addition to polymeric membranes. Gas permeation performances of select hybrids with these three-dimensional (3D) fillers and porous nanosheets have been summarized and discussed with respect to each type. Consequently, the benefits and shortcomings of each class of materials have been outlined and future research directions concerning the hybrids with 3D fillers have been suggested.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Saravanan Janakiram
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Zhongde Dai
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Luca Ansaloni
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| |
Collapse
|