1
|
Deng L, Zheng D, Zhang J, Yang H, Wang L, Wang W, He T, Zhang Y. Treatment and utilization of swine wastewater - A review on technologies in full-scale application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163223. [PMID: 37019235 DOI: 10.1016/j.scitotenv.2023.163223] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
The management of swine wastewater has become the focus of attention in the farming industry. The disposal mode of swine wastewater can be classified as field application of treated waste and treatment to meet discharge standards. The status of investigation and application of unit technology in treatment and utilization such as solid-liquid separation, aerobic treatment, anaerobic treatment, digestate utilization, natural treatment, anaerobic-aerobic combined treatment, advanced treatment, are reviewed from the full-scale application perspective. The technologies of anaerobic digestion-land application is most appropriate for small and medium-sized pig farms or large pig farms with enough land around for digestate application. The process of "solid-liquid separation-anaerobic-aerobic-advanced treatment" to meet the discharge standard is most suitable for large and extra-large pig farms without enough land. Poor operation of anaerobic digestion unit in winter, hard to completely utilize liquid digestate and high treatment cost of digested effluent for meeting discharge standard are established as the main difficulties.
Collapse
Affiliation(s)
- Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Dan Zheng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jingni Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Yunhong Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
2
|
Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070765. [PMID: 28704958 PMCID: PMC5551203 DOI: 10.3390/ijerph14070765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/02/2017] [Accepted: 07/09/2017] [Indexed: 12/02/2022]
Abstract
This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH3-N and NO3-N. Results indicate that the integrated FME-GLUE-based model, with good Nash–Sutcliffe coefficients (0.53–0.69) and correlation coefficients (0.76–0.83), successfully simulates the concentrations of ON-N, NH3-N and NO3-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH3-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO3-N simulation, which was measured using global sensitivity.
Collapse
|