1
|
Murtaza G, Shah SSA, Mumtaz A, Chotana GA, Nafady A, Wahab MA, Sohail M. Efficient Adsorption of Methylene Blue Using a Hierarchically Structured Metal-Organic Framework Derived from Layered Double Hydroxide. ACS OMEGA 2024; 9:16334-16345. [PMID: 38617612 PMCID: PMC11007713 DOI: 10.1021/acsomega.3c10524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
The growing concerns about environmental pollution, particularly water pollution, are causing an increasing alarm in modern society. One promising approach to address this issue involves engineering existing materials to enhance their effectiveness. A one-step solvothermal reconstruction approach was used to build an eco-friendly two-dimensional (2D) AlNiZn-LDH/BDC MOF composite. The characterizations confirm the formation of a metal-organic framework (MOF) at the layered double hydroxide (LDH) surface. The resulting synthesized material, 2D AlNiZn-LDH/BDC MOF, demonstrated remarkable efficacy in decontaminating methylene blue (MB), a model cationic dye found in water systems. The removal performance of 2D AlNiZn-LDH/BDC MOF was significantly higher than that of pristine 2D AlNiZn-LDH. This improvement shows the potential to increase the adsorption capabilities of nanoporous LDH materials by incorporating organic ligands and integrating meso-/microporosity through MOF formation on their surfaces. Furthermore, their kinetic, isothermal, and thermodynamic studies elucidated the adsorption behavior of this composite material. The results of synthesized MOF showed excellent removal efficiency (92.27%) of 10 ppm of MB aqueous solution as compared to pristine LDH. Additionally, the as-synthesized adsorbent could be regenerated for six successive cycles. This method holds promise for the synthesis of novel and highly effective materials to combat water pollution, laying the groundwork for potential advancements in diverse applications.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Department
of Chemistry, National University of Sciences
and Technology, H-12, Islamabad 44000, Pakistan
| | - Syed Shoaib Ahmad Shah
- Department
of Chemistry, National University of Sciences
and Technology, H-12, Islamabad 44000, Pakistan
| | - Asad Mumtaz
- Department
of Chemistry, National University of Sciences
and Technology, H-12, Islamabad 44000, Pakistan
| | - Ghayoor Abbas Chotana
- Department
of Chemistry and Chemical Engineering, Syed Babar Ali School of Science
and Engineering, Lahore University of Management
Sciences, Lahore 54792, Pakistan
| | - Ayman Nafady
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Md A. Wahab
- Energy
and Process Engineering Laboratory, School of Mechanical, Medical
and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Manzar Sohail
- Department
of Chemistry, National University of Sciences
and Technology, H-12, Islamabad 44000, Pakistan
| |
Collapse
|
2
|
Chen R, Hao Y, Francesco S, Mao X, Huang WC. A chitosan-based antibacterial hydrogel with injectable and self-healing capabilities. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:115-125. [PMID: 38433964 PMCID: PMC10902234 DOI: 10.1007/s42995-023-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/20/2023] [Indexed: 03/05/2024]
Abstract
The presence of bacteria directly affects wound healing. Chitosan-based hydrogel biomaterials are a solution as they offer advantages for wound-healing applications due to their strong antimicrobial properties. Here, a double-cross-linking chitosan-based hydrogel with antibacterial, self-healing, and injectable properties is reported. Thiolated chitosan was successfully prepared, and the thiolated chitosan molecules were cross-linked by Ag-S coordination to form a supramolecular hydrogel. Subsequently, the amine groups in the thiolated chitosan covalently cross-linked with genipin to further promote hydrogel formation. In vitro experimental results indicate that hydrogel can release Ag+ over an extended time, achieving an antibacterial rate of over 99% against Escherichia coli and Staphylococcus aureus. Due to the reversible and dynamic feature of Ag-S coordination, an antibacterial hydrogel exhibited injectable and self-healing capabilities. Additionally, the hydrogel showed excellent biocompatibility and biodegradability. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00211-z.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404 China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404 China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404 China
| | - Yanan Hao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404 China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404 China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404 China
| | - Secundo Francesco
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche via Mario Bianco 9, 20131 Milan, Italy
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404 China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404 China
| | - Wen-Can Huang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404 China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404 China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404 China
| |
Collapse
|
3
|
Neelgund GM, Aguilar SF, Kurkuri MD, Rodrigues DF, Ray RL. Elevated Adsorption of Lead and Arsenic over Silver Nanoparticles Deposited on Poly(amidoamine) Grafted Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3852. [PMID: 36364628 PMCID: PMC9654323 DOI: 10.3390/nano12213852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
An efficient adsorbent, CNTs-PAMAM-Ag, was prepared by grafting fourth-generation aromatic poly(amidoamine) (PAMAM) to carbon nanotubes (CNTs) and successive deposition of Ag nanoparticles. The FT-IR, XRD, TEM and XPS results confirmed the successful grafting of PAMAM onto CNTs and deposition of Ag nanoparticles. The absorption efficiency of CNTs-PAMAM-Ag was evaluated by estimating the adsorption of two toxic contaminants in water, viz., Pb(II) and As(III). Using CNTs-PAMAM-Ag, about 99 and 76% of Pb(II) and As(III) adsorption, respectively, were attained within 15 min. The controlling mechanisms for Pb(II) and As(III) adsorption dynamics were revealed by applying pseudo-first and second-order kinetic models. The pseudo-second-order kinetic model followed the adsorption of Pb(II) and As(III). Therefore, the incidence of chemisorption through sharing or exchanging electrons between Pb(II) or As(III) ions and CNTs-PAMAM-Ag could be the rate-controlling step in the adsorption process. Further, the Weber-Morris intraparticle pore diffusion model was employed to find the reaction pathways and the rate-controlling step in the adsorption. It revealed that intraparticle diffusion was not a rate-controlling step in the adsorption of Pb(II) and As(III); instead, it was controlled by both intraparticle diffusion and the boundary layer effect. The adsorption equilibrium was evaluated using the Langmuir, Freundlich, and Temkin isotherm models. The kinetic data of Pb(II) and As(III) adsorption was adequately fitted to the Langmuir isotherm model compared to the Freundlich and Temkin models.
Collapse
Affiliation(s)
- Gururaj M. Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Sanjuana F. Aguilar
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Mahaveer D. Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Debora F. Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA
| | - Ram L. Ray
- College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
4
|
A MOF-based trap with strong affinity toward low-concentration heavy metal ions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Li Y, Zhang Z, Liu X, Che S, Shi N, Chen Y, Yan M. Adsorption behavior and mechanism of Lead (Pb 2+) by sulfate polysaccharide from Enteromorpha prolifera. Int J Biol Macromol 2022; 207:760-770. [PMID: 35351544 DOI: 10.1016/j.ijbiomac.2022.03.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Lead (Pb2+) pollution poses severe healthy and ecological risks to humans. In this work, sulfate polysaccharide from Enteromorpha prolifera (SPE) was utilized for Pb2+ adsorption from simulated intestinal fluid. In order to evaluate its adsorption behaviors comprehensively, batch adsorption of Pb2+ was investigated under different conditions. Results showed that SPE presents high adsorption ability for Pb2+ through chemical adsorption process and the maximum adsorption capacity for Pb2+ was 278.5 mg/g. And SPE exhibited higher removal efficiency (≥60%) for trace Pb2+ (<10 mg/L) compared to that of other adsorbents based on polysaccharide. Besides, its adsorption can be described by Langmuir isotherm and pseudo-second-order kinetic models. Further, XRD, FTIR, and XPS were used to characterize the possible interaction of Pb2+ with SPE, and the results showed that carboxyl and hydroxyl groups in SPE play more important role than that of sulfate group. Our work represents the first assessment of Pb2+ adsorption properties of SPE. This investigation highlights the potential application of SPE to protect the body from hazard of food-derived heavy metals.
Collapse
Affiliation(s)
- Yinping Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhuanyuan Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoyan Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shuai Che
- Key laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Naiwen Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yiming Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
6
|
Gao S, Liu Y. Potassium-assisted synthesis of SUZ-4 zeolite as an efficient adsorbent for Pb2+ removal from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Hachem K, Jasim SA, Al‐Gazally ME, Riadi Y, Yasin G, Turki Jalil A, Abdulkadhm MM, Saleh MM, Fenjan MN, Mustafa YF, Dehno Khalaji A. Adsorption of Pb(
II
) and Cd(
II
) by magnetic chitosan‐salicylaldehyde Schiff base: Synthesis, characterization, thermal study and antibacterial activity. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100507] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences University of Saida—Dr Moulay Tahar Saida Algeria
| | | | | | - Yassine Riadi
- Department of Pharmaceutical Chemistry College of Pharmacy, Prince Sattam bin Abdulaziz University Al‐Kharj Saudi Arabia
| | - Ghulam Yasin
- Department of Botany Bahauddin Zakariya University Multan Pakistan
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology Yanka Kupala State University of Grodno Grodno Belarus
- College of Technical Engineering The Islamic University Najaf Iraq
| | | | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences University Of Anbar Anbar Iraq
| | - Mohammed N. Fenjan
- College of Health and Medical Technology Al‐Ayen University Thi‐Qar Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy University of Mosul Mosul Iraq
| | | |
Collapse
|
8
|
Chen M, Wang X, Zhang H. Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112388. [PMID: 33774561 DOI: 10.1016/j.jenvman.2021.112388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
In this study, we used xanthate to modify two waste biomass materials (corn cob and chestnut shell) and prepared them as biosorbents in one step for effectively removing Pb(II) from aqueous solutions containing only Pb(II) or Pb(II), Cu(II) and Cd(II). The two biosorbents were characterized by SEM, EDS, FTIR and Zeta potential analysis, and the results of the characterization were used to explore the adsorption mechanism of Pb(II) on biosorbents. We compare the Pb(II) removal ability of the two biosorbents and the investigated factors that affect Pb(II) removal. The results show that the adsorption capacity of xanthate modified corn cob (X-CC) and xanthate modified chestnut shell (X-CS) for Pb(II) is related to pH, reaction time, temperature and initial concentrations of both adsorbent and adsorbate. The adsorption of Pb(II) on X-CC and X-CS follows Langmuir isotherm equation and quasi-secondary kinetic equation, and their fitted qm values are 166.39 and 124.84 mg g-1, respectively. The analysis shows that the biosorbent has high selectivity to Pb(II) rather than Cu(II) and Cd(II), and still maintains a high removal rate of Pb(II) in actual wastewater. The biosorbents remove metal ions mainly through ion exchange reaction and the functional group in the material complexes with the metal to form micro-precipitation. The high adsorption capacity in aqueous solution and low costs in the manufacturing process of the present biosorbents ensure that they have great potential in practical applications for treating heavy-metal contaminated surface water.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China.
| | - Xianfeng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hao Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
9
|
Seidi F, Reza Saeb M, Huang Y, Akbari A, Xiao H. Thiomers of Chitosan and Cellulose: Effective Biosorbents for Detection, Removal and Recovery of Metal Ions from Aqueous Medium. CHEM REC 2021; 21:1876-1896. [PMID: 34101343 DOI: 10.1002/tcr.202100068] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Removal of toxic metal ions using adsorbents is a well-known strategy for water treatment. While chitosan and cellulose can adsorb weakly some types of metals, incorporating thiols as metal chelating agents can improve their sorption behaviors significantly. Presented in this review are the various chemical modification strategies applicable for thiolation of chitosan and cellulose in the forms of mercaptans, xanthates and dithiocarbamates. Moreover, much attention has been paid to the specific strategies for controlling the thiolation degree and characterization approaches for establishing the structure-property relationship. Also, the kinetics and isotherm models that elucidate the adsorption processes and mechanisms induced by the thiomers have been explained. These thiomers have found great potentials in the applications associated with metal removal, metal recovery and metal detection.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037, Nanjing, China
| | | | - Yang Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037, Nanjing, China
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, E3B 5A3, Fredericton, New Brunswick, Canada
| |
Collapse
|
10
|
Tunable surface charge and hydrophilicity of sodium polyacrylate intercalated layered double hydroxide for efficient removal of dyes and heavy metal ions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemie der Chitosan‐Aerogele: Lenkung der dreidimensionalen Poren für maßgeschneiderte Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| |
Collapse
|
12
|
Wang N, Qiu Y, Hu K, Huang C, Xiang J, Li H, Tang J, Wang J, Xiao T. One-step synthesis of cake-like biosorbents from plant biomass for the effective removal and recovery heavy metals: Effect of plant species and roles of xanthation. CHEMOSPHERE 2021; 266:129129. [PMID: 33310360 DOI: 10.1016/j.chemosphere.2020.129129] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The continuous production of plant wastes and heavy metal pollution of waters have become widespread unavoidable challenges. Reutilization of plant wastes to treat toxic metal-contaminated water is an eco-friendly way to simultaneously solve these problems. Herein, three cake-like biosorbents were synthesized from tea waste, trimmed lawn grass and Nephrolepis cordifolia leaves through a one-step xanthation modification method combined with lyophilization, respectively. The plant species affected the appearance, structure and mechanical strength of the biosorbents due to the different contents of hydrocarbons and inorganic substances, which influenced the gel-like degree and thus the ability of the particles to pack between water molecules. The maximum adsorption capacities of the modified materials for Pb(II), Cu(II) and Cd(II) were 247.20, 85.80 and 265.31 mg/g, respectively, far higher than those of the original wastes, and the adsorption was selective. These results were mainly attributed to newly introduced -(CS)-S-Na groups, which triggered ion exchange, complexation and microprecipitation between heavy metal ions and functional groups. As-prepared biosorbents owned an excellent regenerability, which contributed to recovery heavy metals. The physicochemical properties and adsorption performances of the modified materials indicated that xanthation is a universal modification method suited to different plant biomasses with great potential to purify heavy metal-contaminated water. These biosorbents with excellent separability and regenerability might be promising for continuous-flow sewage treatment.
Collapse
Affiliation(s)
- Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuyin Qiu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Kaimei Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chujie Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Junsong Xiang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Hui Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jinfeng Tang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
|
14
|
Deepagan VG, Leiske MN, Fletcher NL, Rudd D, Tieu T, Kirkwood N, Thurecht KJ, Kempe K, Voelcker NH, Cifuentes-Rius A. Engineering Fluorescent Gold Nanoclusters Using Xanthate-Functionalized Hydrophilic Polymers: Toward Enhanced Monodispersity and Stability. NANO LETTERS 2021; 21:476-484. [PMID: 33350838 DOI: 10.1021/acs.nanolett.0c03930] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We introduce xanthate-functionalized poly(cyclic imino ethers)s (PCIEs), specifically poly(2-ethyl-2-oxazoline) and poly(2-ethyl-2-oxazine) given their stealth characteristics, as an attractive alternative to conventional thiol-based ligands for the synthesis of highly monodisperse and fluorescent gold nanoclusters (AuNCs). The xanthate in the PCIEs interacts with Au ions, acting as a well-controlled template for the direct formation of PCIE-AuNCs. This method yields red-emitting AuNCs with a narrow emission peak (λem = 645 nm), good quantum yield (4.3-4.8%), long fluorescence decay time (∼722-844 ns), and unprecedented product yield (>98%). The PCIE-AuNCs exhibit long-term colloidal stability, biocompatibility, and antifouling properties, enabling a prolonged blood circulation, lower nonspecific accumulation in major organs, and better renal clearance when compared with AuNCs without polymer coating. The advances made here in the synthesis of metal nanoclusters using xanthate-functionalized PCIEs could propel the production of highly monodisperse, biocompatible, and renally clearable nanoprobes in large-scale for different theranostic applications.
Collapse
Affiliation(s)
- Veerasikku Gopal Deepagan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
| | - Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
| | - Terence Tieu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Nicholas Kirkwood
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Anna Cifuentes-Rius
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
15
|
Sun X, Zhang J, You Y. Enhancement of Cu(II) removal by carbon disulfide modified black wattle tannin gel. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Xu X, Ouyang XK, Yang LY. Adsorption of Pb(II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114523] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemistry of Chitosan Aerogels: Three‐Dimensional Pore Control for Tailored Applications. Angew Chem Int Ed Engl 2020; 60:9828-9851. [DOI: 10.1002/anie.202003053] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| |
Collapse
|
18
|
Maaloul N, Oulego P, Rendueles M, Ghorbal A, Díaz M. Synthesis and characterization of eco-friendly cellulose beads for copper (II) removal from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23447-23463. [PMID: 30604368 DOI: 10.1007/s11356-018-3812-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
In this study, novel cellulose-bead-based biosorbents (CBBAS) were successfully synthesized from almond shell using a simple three-step process: (i) dissolution of bleached almond shell in ionic liquid (1-butyl-3-methylimidazolium chloride), (ii) coagulation of cellulose-ionic liquid solution in water and (iii) freeze-drying. Their morphological, structural and physicochemical properties were thoroughly characterized. These biomaterials exhibited a 3D-macroporous structure with interconnected pores, which provided a high number of adsorption sites. It should be noted that CBBAS biosorbents were efficiently employed for the removal of copper (II) ions from aqueous solutions, showing high adsorption capacity: 128.24 mg g-1. The biosorption equilibrium data obtained were successfully fitted to the Sips model and the kinetics were suitably described by the pseudo-second-order model. Besides, CBBAS biosorbents can be easily separated from the solution for their subsequent reuse, and thus, they represent a method for the removal of copper (II) from aqueous solutions that is not only eco-friendly but also economical.
Collapse
Affiliation(s)
- Najeh Maaloul
- Applied Thermodynamic Research Unit UR11ES80, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071, Oviedo, Spain.
| | - Achraf Ghorbal
- Applied Thermodynamic Research Unit UR11ES80, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
- Higher Institute of Applied Sciences and Technology of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071, Oviedo, Spain
| |
Collapse
|
19
|
Lian Q, Ahmad ZU, Gang DD, Zappi ME, Fortela DLB, Hernandez R. The effects of carbon disulfide driven functionalization on graphene oxide for enhanced Pb(II) adsorption: Investigation of adsorption mechanism. CHEMOSPHERE 2020; 248:126078. [PMID: 32041070 DOI: 10.1016/j.chemosphere.2020.126078] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 05/19/2023]
Abstract
The surface properties of graphene oxide (GO) have been identified as the key effects on the adsorption of Pb(II) from aqueous solutions in this study. This study reveals the effect of the surface reactivity of GO via Carbon Disulfide (CS2) functionalization for Pb(II) adsorption. After successfully preparing CS2 functionalized GO (GOCS), the specific techniques were applied to investigate Pb(II) adsorption onto GOCS. Results indicated that the new sulfur-containing functional groups incorporated onto GOCS significantly enhanced Pb(II) adsorption capacity on GOCS than that of GO, achieving an improvement of 31% in maximum adsorption capacity increasing from 292.8 to 383.4 mg g-1. The equilibrium adsorption capacity for GOCS was 280.2 mg g-1 having an improvement of 83.2% over that of 152.97 mg g-1 for GO at the same initial concentration of 150 mg L-1 under the optimal pH of 5.7. Moreover, the results of adsorption experiments showed an excellent fit to the Langmuir and Pseudo-Second-Order models indicating the monolayer and chemical adsorption, respectively. The mechanism for Pb(II) adsorption on GOCS was proposed as the coordination, electrostatic interactions, cation-pi interactions, and Lewis acid-base interactions. The regeneration study showed that GOCS had an appreciable reusability for Pb(II) adsorption with the adsorption capacity of 208.92 mg g-1 after five regeneration cycles. In summary, GOCS has been proved to be a novel, useful, and potentially economic adsorbent for the high-efficiency removal of Pb(II) from aqueous solutions.
Collapse
Affiliation(s)
- Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Zaki Uddin Ahmad
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA.
| | - Mark E Zappi
- Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Dhan Lord B Fortela
- Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Rafael Hernandez
- Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| |
Collapse
|
20
|
Vafakish B, Wilson LD. Cu(II) Ion Adsorption by Aniline Grafted Chitosan and Its Responsive Fluorescence Properties. Molecules 2020; 25:molecules25051052. [PMID: 32110994 PMCID: PMC7179099 DOI: 10.3390/molecules25051052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/03/2022] Open
Abstract
The detection and removal of heavy metal species in aquatic environments is of continued interest to address ongoing efforts in water security. This study was focused on the preparation and characterization of aniline grafted chitosan (CS-Ac-An), and evaluation of its adsorption properties with Cu(II) under variable conditions. Materials characterization provides support for the grafting of aniline onto chitosan, where the kinetic and thermodynamic adsorption properties reveal a notably greater uptake (>20-fold) of Cu(II) relative to chitosan, where the adsorption capacity (Qm) of CS-Ac-An was 106.6 mg/g. Adsorbent regeneration was demonstrated over multiple adsorption-desorption cycles with good uptake efficiency. CS-Ac-An has a strong fluorescence emission that undergoes prominent quenching at part per billion levels in aqueous solution. The quenching process displays a linear response over variable Cu(II) concentration (0.05–5 mM) that affords reliable detection of low level Cu(II) levels by an in situ “turn-off” process. The tweezer-like chelation properties of CS-Ac-An with Cu(II) was characterized by complementary spectroscopic methods: IR, NMR, X-ray photoelectron (XPS), and scanning electron microscopy (SEM). The role of synergistic effects are inferred among two types of active adsorption sites: electron rich arene rings and amine groups of chitosan with Cu(II) species to afford a tweezer-like binding modality.
Collapse
|
21
|
Jiang X, An QD, Xiao ZY, Zhai SR, Cui L. Selective capture of lanthanum and lead cations over biomass-derived ion-imprinted biomacromolecule adsorbents. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Wang N, Qiu Y, Xiao T, Wang J, Chen Y, Xu X, Kang Z, Fan L, Yu H. Comparative studies on Pb(II) biosorption with three spongy microbe-based biosorbents: High performance, selectivity and application. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:39-49. [PMID: 30901684 DOI: 10.1016/j.jhazmat.2019.03.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Lead pollution in industrial-derived water has become an increasingly serious concern. The development of adsorbents with excellent efficiency, selectivity and separability using diverse microorganisms is ideal for treating lead pollution. In this study, gram-negative bacteria Pseudomonas putida I3, gram-positive bacteria Microbacterium sp. OLJ1 and mycelial fungus Talaromyces amestolkiae Pb served as raw materials to facilely synthesize sponge-like biosorbents via a one-step method at room temperature. SEM, EDS, FTIR, 13C NMR, XRD and XPS were used for investigating the morphology and surface properties of these three biosorbents. The obtained biosorbents possessed the same three-dimensional porous structure but different productivities and mechanical strengths due to the similar chemical compositions and different cell structures of their microorganisms. Pb(II) adsorption on X-PI3, X-OLJ1 and X-TPb was fast and pH dependent, with maximal adsorption capacities of 345.02, 237.02 and 199.02 mg/g, respectively. The biosorbents had a high selectivity for Pb(II), while Pb(II) remarkably suppressed the adsorption of co-existing heavy metal ions. The analyses indicated that Pb(II) removal was mainly achieved by ion exchange reactions, surface complexation with heteroatom-containing functional groups and microprecipitation. The treatment effects of synthetic and real wastewater revealed that the as-prepared biosorbents are promising for Pb(II) removal.
Collapse
Affiliation(s)
- Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuyin Qiu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuxiao Chen
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xingjian Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lili Fan
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130102, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
23
|
Song K, Wang X, Zhang B, Li J, Liu P, Yang R, Wang J. Hierarchical Structure MnO
2
Coated PDMS−Carbon Nanotube Sponge as Flexible Electrode for Electrocatalytic Water Splitting and High Performance Supercapacitor. ChemistrySelect 2019. [DOI: 10.1002/slct.201901546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kun Song
- Key Laboratory of Superlight Material and Surface TechnologyMinistry of EducationHarbin Engineering University Harbin 150001 Heilongriver P. R. China
- College of Chemistry and Chemical EngineeringQiqihar University Qiqihar 161006 Heilongriver P. R. China
| | - Xin Wang
- Key Laboratory of Superlight Material and Surface TechnologyMinistry of EducationHarbin Engineering University Harbin 150001 Heilongriver P. R. China
- College of Chemistry and Chemical EngineeringQiqihar University Qiqihar 161006 Heilongriver P. R. China
| | - Bin Zhang
- Key Laboratory of Superlight Material and Surface TechnologyMinistry of EducationHarbin Engineering University Harbin 150001 Heilongriver P. R. China
| | - Junqing Li
- Key Laboratory of Superlight Material and Surface TechnologyMinistry of EducationHarbin Engineering University Harbin 150001 Heilongriver P. R. China
- College of Materials Science and Chemical EngineeringHarbin Engineering University, Harbin 150001 Heilongriver P. R. China
| | - Peili Liu
- College of Materials Science and Chemical EngineeringHarbin Engineering University, Harbin 150001 Heilongriver P. R. China
| | - Rui Yang
- Key Laboratory of Superlight Material and Surface TechnologyMinistry of EducationHarbin Engineering University Harbin 150001 Heilongriver P. R. China
- College of Chemistry and Chemical EngineeringQiqihar University Qiqihar 161006 Heilongriver P. R. China
| | - Jun Wang
- Key Laboratory of Superlight Material and Surface TechnologyMinistry of EducationHarbin Engineering University Harbin 150001 Heilongriver P. R. China
- College of Materials Science and Chemical EngineeringHarbin Engineering University, Harbin 150001 Heilongriver P. R. China
| |
Collapse
|
24
|
Lyu H, Fan J, Ling Y, Yu Y, Xie Z. Functionalized cross-linked chitosan with ionic liquid and highly efficient removal of azo dyes from aqueous solution. Int J Biol Macromol 2019; 126:1023-1029. [DOI: 10.1016/j.ijbiomac.2018.12.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022]
|
25
|
Shen W, Jiang X, An QD, Xiao ZY, Zhai SR, Cui L. Combining mussel and seaweed hydrogel-inspired strategies to design novel ion-imprinted sorbents for ultra-efficient lead removal from water. NEW J CHEM 2019. [DOI: 10.1039/c8nj06154h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead(ii) is one of the most toxic heavy metals and is a serious threat to the environment and human health.
Collapse
Affiliation(s)
- Wei Shen
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Xiao Jiang
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Qing-Da An
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Zuo-Yi Xiao
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Shang-Ru Zhai
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Li Cui
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| |
Collapse
|
26
|
Fabrication of xanthate-modified chitosan/poly(N-isopropylacrylamide) composite hydrogel for the selective adsorption of Cu(II), Pb(II) and Ni(II) metal ions. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.09.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Plate column adsorption of Pb(II) from industrial wastewater on sponge-type composite adsorbent: Optimization and application. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Ifthikar J, Jiao X, Ngambia A, Wang T, Khan A, Jawad A, Xue Q, Liu L, Chen Z. Facile One-Pot Synthesis of Sustainable Carboxymethyl Chitosan - Sewage Sludge Biochar for Effective Heavy Metal Chelation and Regeneration. BIORESOURCE TECHNOLOGY 2018; 262:22-31. [PMID: 29689437 DOI: 10.1016/j.biortech.2018.04.053] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
In this paper, sewage sludge, a solid waste from wastewater treatment plant, which eagerly requires proper treatment was reused as solid support in the form of sewage sludge biochar, then modified with carboxymethyl chitosan to form a bio-adsorbent. Further, carboxymethyl chitosan coating on sewage sludge biochar improved carboxymethyl chitosan's stability in water. The prepared bio-adsorbent revealed a shorter equilibrium time (<60 min) for Pb(II) adsorption and a superior capacity of 594.17 mg g-1 for Hg(II) adsorption, which are so far the best recorded performance achieved for chitosan based adsorbents. Additionally, the adsorbent was highly selective for heavy metal ions and it also presented a good stability and reusability for industrial applications. These outcomes demonstrate waste valorization through a green, facile and one-pot approach that turns the solid waste of sewage sludge into biochar adsorbent with propitious applications in the elimination of heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiang Jiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Audrey Ngambia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ting Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Aimal Khan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ali Jawad
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
29
|
Jin C, Zhang X, Xin J, Liu G, Chen J, Wu G, Liu T, Zhang J, Kong Z. Thiol–Ene Synthesis of Cysteine-Functionalized Lignin for the Enhanced Adsorption of Cu(II) and Pb(II). Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00823] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Can Jin
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Xueyan Zhang
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Junna Xin
- School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Guifeng Liu
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Jian Chen
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Guomin Wu
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Tuan Liu
- School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Jinwen Zhang
- School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Zhenwu Kong
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| |
Collapse
|
30
|
Kong D, Qiao N, Wang N, Wang Z, Wang Q, Zhou Z, Ren Z. Facile preparation of a nano-imprinted polymer on magnetite nanoparticles for the rapid separation of lead ions from aqueous solution. Phys Chem Chem Phys 2018; 20:12870-12878. [PMID: 29700530 DOI: 10.1039/c8cp01163j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel nanostructured magnetic ion-imprinted polymer (IIP) was synthesized for the selective adsorption of Pb(ii) from aqueous solution. The IIP was prepared on functional Fe3O4@SiO2 core/shell nanoparticles as a support. Monomer units in the polymer featured the typical bidentate ligand itaconic acid. We used ethylene glycol dimethacrylate and 2,2-azoisobisbutyronitrile as a cross-linker and an initiator, respectively. Monomers with different acid-base properties and different proportions of cross-linker were investigated to obtain high-performance adsorbents. Our results showed that the IIP prepared from itaconic acid had a high adsorption capacity owing to the strong binding between the monomer and Pb(ii) template ion. The IIPs were characterized using Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area analysis, thermogravimetric analysis, and transmission electron microscopy. We confirmed the formation of a nano-imprinted shell layer on the surface of Fe3O4@SiO2. The adsorption rate was fast, conforming to a pseudo-second-order kinetic and Langmuir adsorption model; the adsorption mechanism was deemed to be chemisorption as a single molecular layer. The maximum adsorption capacity of the IIP (51.2 mg g-1) was approximately three times as large as that of the non-imprinted polymer (17.9 mg g-1). The selectivity factors for Pb(ii) in mixed solutions of Pb(ii)/Co(ii), Pb(ii)/Cu(ii), and Pb(ii)/Zn(ii) were 45.6, 6.45, and 8.3, respectively. Pb-IIP exhibited a high selectivity towards Pb(ii), which enabled the enrichment of Pb(ii) in aqueous solution.
Collapse
Affiliation(s)
- Delong Kong
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
31
|
He C, Zhou Q, Duan Z, Xu X, Wang F, Li H. One-step synthesis of a β-cyclodextrin derivative and its performance for the removal of Pb(II) from aqueous solutions. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3289-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Wang N, Xu X, Li H, Wang Q, Yuan L, Yu H. High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb(II) removal from wastewater. BIORESOURCE TECHNOLOGY 2017; 233:58-66. [PMID: 28258997 DOI: 10.1016/j.biortech.2017.02.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Biosorption using microbes has been proved to be an efficient technology to remove heavy metals from wastewater, whereas the imperfections in mechanical property and separation limit their practical application. In this study, Pseudomonas putida I3 and Talaromyces amestolkiae Pb respectively combined with xanthate-modified thiourea chitosan sponge (PXTCS and TXTCS) were synthesized to investigate the Pb(II) removal ability from solutions. The prepared biosorbents possessed a three-dimensional macroporous structure convenient for separation. Experimental data indicated their biosorption behaviors well followed the pseudo-second-order kinetics and Langmuir isotherm model. The maximum biosorption capacities of PXTCS and TXTCS were 232.03 and 241.61mgg-1 with 40% P. putida I3 and 15% T. amestolkiae Pb, respectively. For the effects of co-existing metal ions on Pb(II) biosorption, the promoting degree followed the sequence: Zn(II)>Na(I)≈K(I)>Ca(II)>Mg(II)≈Al(III)≫Cd(II)>Fe(III). Both prepared biosorbents were effective in removing heavy metals from simulated industrial effluents containing various trace-level heavy metals or high concentration Pb(II).
Collapse
Affiliation(s)
- Nana Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjian Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China
| | - Haiyan Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China
| | - Lizhu Yuan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|