1
|
Aminfar P, Ferguson T, Steele E, MacNeil EM, Matus MF, Malola S, Häkkinen H, Duchesne PN, Loock HP, Stamplecoskie KG. Accelerated size-focusing light activated synthesis of atomically precise fluorescent Au 22(Lys-Cys-Lys) 16 clusters. NANOSCALE 2023; 16:205-211. [PMID: 38051125 DOI: 10.1039/d3nr04793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Atomically precise metal nanoclusters are promising candidates for various biomedical applications, including their use as photosensitizers in photodynamic therapy (PDT). However, typical synthetic routes of clusters often result in complex mixtures, where isolating and characterizing pure samples becomes challenging. In this work, a new Au22(Lys-Cys-Lys)16 cluster is synthesized using photochemistry, followed by a new type of light activated, accelerated size-focusing. Fluorescence excitation-emission matrix spectroscopy (EEM) and parallel factor (PARAFAC) analysis have been applied to track the formation of fluorescent species, and to assess optical purity of the final product. Furthermore, excited state reactivity of Au22(Lys-Cys-Lys)16 clusters is studied, and formation of type-I reactive oxygen species (ROS) from the excited state of the clusters is observed. The proposed size-focusing procedure in this work can be easily adapted to conventional cluster synthetic methods, such as borohydride reduction, to provide atomically precise clusters.
Collapse
Affiliation(s)
- Parimah Aminfar
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Travis Ferguson
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Emily Steele
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Emerson M MacNeil
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - María Francisca Matus
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Paul N Duchesne
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Hans-Peter Loock
- Department of Chemistry, University of Victoria, Victoria, British Columbia, V8N 5C2, Canada
| | | |
Collapse
|
2
|
Packirisamy V, Pandurangan P. Polyacrylamide gel electrophoresis: a versatile tool for the separation of nanoclusters. Biotechniques 2023; 74:51-62. [PMID: 36517970 PMCID: PMC9887536 DOI: 10.2144/btn-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Atomically precise nanoclusters comprising 1-100 atoms have emerged as a new class of nanomaterials with intriguing size-dependent physicochemical properties. The significant changes in the properties of nanoclusters were observed in tailoring the number of metal atoms and ligands that determines their functions and applicability. Since 1990, thiolated gold nanoclusters have been studied. The separation of monodispersed clusters was crucial and time-consuming. To address these shortcomings, several separation techniques have made it possible to separate the series of metal nanoclusters with a precise composition of metals and ligands. Among these techniques, polyacrylamide gel electrophoresis was utilized for hydrophilic cluster separation. This review shall focus on the principle, operation and application of the polyacrylamide gel electrophoresis technique to encourage a greater understanding of the characteristics and usefulness of this method.
Collapse
Affiliation(s)
- Vinitha Packirisamy
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Prabhu Pandurangan
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai, 600025, India,Author for correspondence:
| |
Collapse
|
3
|
Negishi Y. Metal-nanocluster Science and Technology: My Personal History and Outlook. Phys Chem Chem Phys 2022; 24:7569-7594. [DOI: 10.1039/d1cp05689a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal nanoclusters (NCs) are among the leading targets in research of nanoscale materials, and elucidation of their properties (science) and development of control techniques (technology) have been continuously studied for...
Collapse
|
4
|
Basu S, Paul A, Antoine R. Controlling the Chemistry of Nanoclusters: From Atomic Precision to Controlled Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:62. [PMID: 35010012 PMCID: PMC8746821 DOI: 10.3390/nano12010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Metal nanoclusters have gained prominence in nanomaterials sciences, owing to their atomic precision, structural regularity, and unique chemical composition. Additionally, the ligands stabilizing the clusters provide great opportunities for linking the clusters in higher order dimensions, eventually leading to the formation of a repertoire of nanoarchitectures. This makes the chemistry of atomic clusters worth exploring. In this mini review, we aim to focus on the chemistry of nanoclusters. Firstly, we summarize the important strategies developed so far for the synthesis of atomic clusters. For each synthetic strategy, we highlight the chemistry governing the formation of nanoclusters. Next, we discuss the key techniques in the purification and separation of nanoclusters, as the chemical purity of clusters is deemed important for their further chemical processing. Thereafter which we provide an account of the chemical reactions of nanoclusters. Then, we summarize the chemical routes to the spatial organization of atomic clusters, highlighting the importance of assembly formation from an application point of view. Finally, we raise some fundamentally important questions with regard to the chemistry of atomic clusters, which, if addressed, may broaden the scope of research pertaining to atomic clusters.
Collapse
Affiliation(s)
- Srestha Basu
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Anumita Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France
| |
Collapse
|
5
|
Kawawaki T, Kataoka Y, Ozaki S, Kawachi M, Hirata M, Negishi Y. Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters. Chem Commun (Camb) 2020; 57:417-440. [PMID: 33350403 DOI: 10.1039/d0cc06809h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With global warming and the depletion of fossil resources, our fossil-fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as clean and renewable energy. Water-splitting photocatalysts can produce H2 from water using sunlight, which are almost infinite on the earth. However, further improvements are indispensable to enable their practical application. To improve the efficiency of the photocatalytic water-splitting reaction, in addition to improving the semiconductor photocatalyst, it is extremely effective to improve the cocatalysts (loaded metal nanoclusters, NCs) that enable the reaction to proceed on the photocatalysts. We have thus attempted to strictly control metal NCs on photocatalysts by introducing the precise-control techniques of metal NCs established in the metal NC field into research on water-splitting photocatalysts. Specifically, the cocatalysts on the photocatalysts were controlled by adsorbing atomically precise metal NCs on the photocatalysts and then removing the protective ligands by calcination. This work has led to several findings on the electronic/geometrical structures of the loaded metal NCs, the correlation between the types of loaded metal NCs and the water-splitting activity, and the methods for producing high water-splitting activity. We expect that the obtained knowledge will lead to clear design guidelines for the creation of practical water-splitting photocatalysts and thereby contribute to the construction of a hydrogen-energy society.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Kawawaki T, Imai Y, Suzuki D, Kato S, Kobayashi I, Suzuki T, Kaneko R, Hossain S, Negishi Y. Atomically Precise Alloy Nanoclusters. Chemistry 2020; 26:16150-16193. [DOI: 10.1002/chem.202001877] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
- Research Institute for Science & Technology Tokyo University of Science Shinjuku-ku, Tokyo 162-8601 Japan
- Photocatalysis International Research Center Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yukari Imai
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Daiki Suzuki
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Shun Kato
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Ibuki Kobayashi
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Taiyo Suzuki
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Ryo Kaneko
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Sakiat Hossain
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Yuichi Negishi
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
- Research Institute for Science & Technology Tokyo University of Science Shinjuku-ku, Tokyo 162-8601 Japan
- Photocatalysis International Research Center Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
7
|
Ebina A, Hossain S, Horihata H, Ozaki S, Kato S, Kawawaki T, Negishi Y. One-, Two-, and Three-Dimensional Self-Assembly of Atomically Precise Metal Nanoclusters. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1105. [PMID: 32503177 PMCID: PMC7353419 DOI: 10.3390/nano10061105] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
Metal nanoclusters (NCs), which consist of several, to about one hundred, metal atoms, have attracted much attention as functional nanomaterials for use in nanotechnology. Because of their fine particle size, metal NCs exhibit physical/chemical properties and functions different from those of the corresponding bulk metal. In recent years, many techniques to precisely synthesize metal NCs have been developed. However, to apply these metal NCs in devices and as next-generation materials, it is necessary to assemble metal NCs to a size that is easy to handle. Recently, multiple techniques have been developed to form one-, two-, and three-dimensional connected structures (CSs) of metal NCs through self-assembly. Further progress of these techniques will promote the development of nanomaterials that take advantage of the characteristics of metal NCs. This review summarizes previous research on the CSs of metal NCs. We hope that this review will allow readers to obtain a general understanding of the formation and functions of CSs and that the obtained knowledge will help to establish clear design guidelines for fabricating new CSs with desired functions in the future.
Collapse
Affiliation(s)
- Ayano Ebina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
| | - Hikaru Horihata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
| | - Shuhei Ozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
| | - Shun Kato
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (A.E.); (S.H.); (H.H.); (S.O.); (S.K.); (T.K.)
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
8
|
Negishi Y, Hashimoto S, Ebina A, Hamada K, Hossain S, Kawawaki T. Atomic-level separation of thiolate-protected metal clusters. NANOSCALE 2020; 12:8017-8039. [PMID: 32207494 DOI: 10.1039/d0nr00824a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fine metal clusters have attracted much attention from the viewpoints of both basic and applied science for many years because of their unique physical/chemical properties and functions, which differ from those of bulk metals. Among these materials, thiolate (SR)-protected gold clusters (Aun(SR)m clusters) have been the most studied metal clusters since 2000 because of their ease of synthesis and handling. However, in the early 2000s, it was not easy to isolate these metal clusters. Therefore, high-resolution separation methods were explored, and several atomic-level separation methods, including polyacrylamide gel electrophoresis (PAGE), high-performance liquid chromatography (HPLC), and thin-layer chromatography (TLC), were successively established. These techniques have made it possible to isolate a series of Aun(SR)m clusters, and much knowledge has been obtained on the correlation between the chemical composition and fundamental properties such as the stability, electronic structure, and physical properties of Aun(SR)m clusters. In addition, these high-resolution separation techniques are now also frequently used to evaluate the distribution of the product and to track the reaction process. In this way, high-resolution separation techniques have played an essential role in the study of Aun(SR)m clusters. However, only a few reviews have focused on this work. This review focuses on PAGE, HPLC, and TLC separation techniques, which offer high resolution and repeatability, and summarizes previous studies on the high-resolution separation of Aun(SR)m and related clusters with the purpose of promoting a better understanding of the features and the utility of these techniques.
Collapse
Affiliation(s)
- Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Li D, Kumari B, Zhang X, Wang C, Mei X, Rotello VM. Purification and separation of ultra-small metal nanoclusters. Adv Colloid Interface Sci 2020; 276:102090. [PMID: 31895988 PMCID: PMC6961975 DOI: 10.1016/j.cis.2019.102090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Metal nanoclusters (NCs) are ultra-small nanoparticles intermediate in size between small molecule complexes and nanoparticles. NCs with tunable surface functionality feature unique physical and chemical properties, however these properties are frequently compromised by the presence of undesired components such as excess ligands or mixtures of NCs. In a typical synthesis process, different NCs can be formed with varying numbers of metal atoms and/or ligands, and even NCs with the same number of metal atoms and ligands can have different spatial structures. The separation of pure NCs is important because different species have distinct optical and catalytic behavior. However, NCs can be difficult to purify or separate for a range of reasons. In this review, we discuss established and emerging approaches for NC purification/separation, with a focus on choosing the appropriate method depending on NC and application.
Collapse
Affiliation(s)
- Dan Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA; Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
| | - Beena Kumari
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA; Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA
| | - Cuiping Wang
- Key Laboratory for Functional Material, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xifan Mei
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA.
| |
Collapse
|
10
|
Black DM, Hoque MM, Placencia-Villa G, Whetten RL. New Evidence of the Bidentate Binding Mode in 3-MBA Protected Gold Clusters: Analysis of Aqueous 13-18 kDa Gold-Thiolate Clusters by HPLC-ESI-MS Reveals Special Compositions Au n(3-MBA) p, ( n = 48-67, p = 26-30). NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1303. [PMID: 31514483 PMCID: PMC6781097 DOI: 10.3390/nano9091303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Abstract
Gold clusters protected by 3-MBA ligands (MBA = mercaptobenzoic acid, -SPhCO2H) have attracted recent interest due to their unusual structures and their advantageous ligand-exchange and bioconjugation properties. Azubel et al. first determined the core structure of an Au68-complex, which was estimated to have 32 ligands (3-MBA groups). To explain the exceptional structure-composition and reaction properties of this complex, and its larger homologs, Tero et al. proposed a "dynamic stabilization" via carboxyl O-H--Au interactions. Herein, we report the first results of an integrated liquid chromatography/mass spectrometer (LC/MS) analysis of unfractionated samples of gold/3-MBA clusters, spanning a narrow size range 13.4 to 18.1 kDa. Using high-throughput procedures adapted from bio-macromolecule analyses, we show that integrated capillary high performance liquid chromatography electrospray ionization mass spectrometer (HPLC-ESI-MS), based on aqueous-methanol mobile phases and ion-pairing reverse-phase chromatography, can separate several major components from the nanoclusters mixture that may be difficult to resolve by standard native gel electrophoresis due to their similar size and charge. For each component, one obtains a well-resolved mass spectrum, nearly free of adducts or signs of fragmentation. A consistent set of molecular mass determinations is calculated from detected charge-states tunable from 3- (or lower), to 2+ (or higher). One thus arrives at a series of new compositions (n, p) specific to the Au/3-MBA system. The smallest major component is assigned to the previously unknown (48, 26); the largest one is evidently (67, 30), vs. the anticipated (68, 32). Various explanations for this discrepancy are considered. A prospective is given for the various members of this novel series, along with a summary of the advantages and present limitations of the micro-scale integrated LC/MS approach in characterizing such metallic-core macro-molecules, and their derivatives.
Collapse
Affiliation(s)
- David M Black
- Department of Physics & Astronomy, University of Texas, San Antonio, TX 78249, USA.
| | - M Mozammel Hoque
- Department of Physics & Astronomy, University of Texas, San Antonio, TX 78249, USA.
| | - Germán Placencia-Villa
- Department of Physics & Astronomy, University of Texas, San Antonio, TX 78249, USA.
- Department of Biology, University of Texas, San Antonio, TX 78249, USA.
| | - Robert L Whetten
- Department of Physics & Astronomy, University of Texas, San Antonio, TX 78249, USA.
| |
Collapse
|
11
|
Niihori Y, Yoshida K, Hossain S, Kurashige W, Negishi Y. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Yoshida
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
12
|
Knoppe S, Vogt P. HPLC of Monolayer-Protected Gold Clusters with Baseline Separation. Anal Chem 2018; 91:1603-1609. [DOI: 10.1021/acs.analchem.8b05064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stefan Knoppe
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
- Max-Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart, Germany
| | - Pascal Vogt
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Black DM, Robles G, Bach SBH, Whetten RL. Gold Nanocluster Prospecting via Capillary Liquid Chromatography-Mass Spectrometry: Discovery of Three Quantized Gold Clusters in a Product Mixture of “2 nm Gold Nanoparticles”. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Niihori Y, Shima D, Yoshida K, Hamada K, Nair LV, Hossain S, Kurashige W, Negishi Y. High-performance liquid chromatography mass spectrometry of gold and alloy clusters protected by hydrophilic thiolates. NANOSCALE 2018; 10:1641-1649. [PMID: 29192295 DOI: 10.1039/c7nr07840d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, we found two hydrophilic interaction liquid chromatography (HILIC) columns for high-performance liquid chromatography (HPLC) suitable for the high-resolution separation of hydrophilic metal clusters. The mass distributions of the product mixtures of hydrophilic metal clusters were evaluated via HPLC mass spectrometry (LC/MS) using these HILIC columns. Consequently, we observed multiple clusters that had not been previously reported for glutathionate (SG)-protected gold clusters (Aun(SG)m). Additionally, we demonstrated that Aun-xMx(SG)m alloy clusters (M = Ag, Cu, or Pd) in which part of the Au in the Aun(SG)m cluster is replaced by a heteroelement can be synthesized, similar to the case of hydrophobic alloy clusters. It is easy to evaluate the mass distributions of hydrophilic metal clusters using this method. Thus, remarkable progress in the synthesis techniques of hydrophilic metal clusters through the use of this method is anticipated, as is the situation for hydrophobic metal clusters.
Collapse
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Black DM, Robles G, Lopez P, Bach SBH, Alvarez M, Whetten RL. Liquid Chromatography Separation and Mass Spectrometry Detection of Silver-Lipoate Ag 29(LA) 12 Nanoclusters: Evidence of Isomerism in the Solution Phase. Anal Chem 2018; 90:2010-2017. [PMID: 29260853 DOI: 10.1021/acs.analchem.7b04104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evidence for the existence of condensed-phase isomers of silver-lipoate clusters, Ag29(LA)12, where LA = (R)-α lipoic acid, was obtained by reversed-phase ion-pair liquid chromatography with in-line UV-vis and electrospray ionization (ESI)-MS detection. All components of a raw mixture were separated according to surface chemistry and increasing size via reversed-phase gradient HPLC methods and identified by their corresponding m/z ratio by ESI in the negative ionization mode. Aqueous and methanol mobile-phase mixtures, each containing 400 mM hexafluoroisopropanol (HFIP)-15 mM triethylamine (TEA), were employed to facilitate the interaction between the clusters and stationary phase via formation of ion-pairs. TEA-HFIP (triethylammonium-hexafluoroisopropoxide) had been shown to provide superior chromatographic peak shape and mass spectral signal compared with alternative modifiers such as TEAA (triethylammonium-acetate) for analysis of oligonucleotide samples. Liquid chromatographic separation prior to mass spectrometry detection facilitated sample analysis by production of simplified mass spectra for each eluting cluster species and provided insight into the existence of at least two major solution-phase isomers of Ag29(LA)12. UV-vis detection in-line with ESI analysis provided independent confirmation of the existence of the isomers and their similar electronic structure as judged from their identical optical spectra in the 300-500 nm range. [Diastereomerism provides a possible interpretation for the near-equal abundance of the two forms, based on a structurally defined nonaqueous homologue.].
Collapse
Affiliation(s)
- David M Black
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| | - Geronimo Robles
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| | - Priscilla Lopez
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| | - Stephan B H Bach
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| | - Marcos Alvarez
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| | - Robert L Whetten
- Departments of Physics and ‡Chemistry, University of Texas , San Antonio, Texas 78249, United States
| |
Collapse
|
16
|
Savage PE. Virtual Special Issue: Invited Papers from the 251st ACS National Meeting in San Diego. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Phillip E. Savage
- The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|