• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4634738)   Today's Articles (5274)   Subscriber (49998)
For: Wang B, Zhou L, Xu K, Wang Q. Prediction of Minimum Ignition Energy from Molecular Structure Using Quantitative Structure–Property Relationship (QSPR) Models. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b04347] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Ahmed A, Yub Harun N, Waqas S, Arshad U, Ghalib SA. Optimization of Operational Parameters Using Artificial Neural Network and Support Vector Machine for Bio-oil Extracted from Rice Husk. ACS OMEGA 2024;9:26540-26548. [PMID: 38911793 PMCID: PMC11190907 DOI: 10.1021/acsomega.4c03131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
2
Waqas S, Harun NY, Arshad U, Laziz AM, Sow Mun SL, Bilad MR, Nordin NAH, Alsaadi AS. Optimization of operational parameters using RSM, ANN, and SVM in membrane integrated with rotating biological contactor. CHEMOSPHERE 2024;349:140830. [PMID: 38056711 DOI: 10.1016/j.chemosphere.2023.140830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
3
Wu J, Su Y, Yang A, Ren J, Xiang Y. An improved multi-modal representation-learning model based on fusion networks for property prediction in drug discovery. Comput Biol Med 2023;165:107452. [PMID: 37690287 DOI: 10.1016/j.compbiomed.2023.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
4
Wang X, Zhang T, Zhang H, Wang X, Xie B, Fan W. Combined DFT and Machine Learning Study of the Dissociation and Migration of H in Pyrrole Derivatives. J Phys Chem A 2023;127:7383-7399. [PMID: 37615481 DOI: 10.1021/acs.jpca.3c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
5
Quan Y, Parker TF, Hua Y, Jeong HK, Wang Q. Process Elucidation and Hazard Analysis of the Metal–Organic Framework Scale-Up Synthesis: A Case Study of ZIF-8. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
6
Waqas S, Harun NY, Sambudi NS, Arshad U, Nordin NAHM, Bilad MR, Saeed AAH, Malik AA. SVM and ANN Modelling Approach for the Optimization of Membrane Permeability of a Membrane Rotating Biological Contactor for Wastewater Treatment. MEMBRANES 2022;12:membranes12090821. [PMID: 36135840 PMCID: PMC9504877 DOI: 10.3390/membranes12090821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 05/31/2023]
7
Nkulikiyinka P, Wagland ST, Manovic V, Clough PT. Prediction of Combined Sorbent and Catalyst Materials for SE-SMR, Using QSPR and Multitask Learning. Ind Eng Chem Res 2022;61:9218-9233. [PMID: 35818477 PMCID: PMC9264356 DOI: 10.1021/acs.iecr.2c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
8
Escobar-Hernandez HU, Pérez LM, Hu P, Soto FA, Papadaki MI, Zhou HC, Wang Q. Thermal Stability of Metal–Organic Frameworks (MOFs): Concept, Determination, and Model Prediction Using Computational Chemistry and Machine Learning. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
9
Park S, Bailey JP, Pasman HJ, Wang Q, El-Halwagi MM. Fast, easy-to-use, machine learning-developed models of prediction of flash point, heat of combustion, and lower and upper flammability limits for inherently safer design. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
10
Hu P, Jiao Z, Zhang Z, Wang Q. Development of Solubility Prediction Models with Ensemble Learning. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
11
Chen CC, Guo YC. Prediction of minimum ignition energy using quantitative structure activity relationships approach. J Loss Prev Process Ind 2021. [DOI: 10.1016/j.jlp.2021.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
12
Chaudhari P, Ade N, Pérez LM, Kolis S, Mashuga CV. Minimum Ignition Energy (MIE) prediction models for ignition sensitive fuels using machine learning methods. J Loss Prev Process Ind 2021. [DOI: 10.1016/j.jlp.2020.104343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
13
Eini S, Jhamb S, Sharifzadeh M, Rashtchian D, Kontogeorgis GM. Developing group contribution models for the estimation of Atmospheric Lifetime and Minimum Ignition Energy. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
14
Jiao Z, Hu P, Xu H, Wang Q. Machine Learning and Deep Learning in Chemical Health and Safety: A Systematic Review of Techniques and Applications. ACS CHEMICAL HEALTH & SAFETY 2020. [DOI: 10.1021/acs.chas.0c00075] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
15
Jiao Z, Ji C, Yuan S, Zhang Z, Wang Q. Development of machine learning based prediction models for hazardous properties of chemical mixtures. J Loss Prev Process Ind 2020. [DOI: 10.1016/j.jlp.2020.104226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
16
A quantitative structure activity relationship model for predicting minimum ignition energy of organic substance. J Loss Prev Process Ind 2020. [DOI: 10.1016/j.jlp.2020.104227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
17
Jiao Z, Sun Y, Hong Y, Parker T, Hu P, Mannan MS, Wang Q. Development of Flammable Dispersion Quantitative Property–Consequence Relationship Models Using Extreme Gradient Boosting. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
18
Chaudhari P, Ade N, Pérez LM, Kolis S, Mashuga CV. Quantitative Structure-Property Relationship (QSPR) models for Minimum Ignition Energy (MIE) prediction of combustible dusts using machine learning. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
19
Lu H, Liu W, Yang F, Zhou H, Liu F, Yuan H, Chen G, Jiao Y. Thermal Conductivity Estimation of Diverse Liquid Aliphatic Oxygen-Containing Organic Compounds Using the Quantitative Structure-Property Relationship Method. ACS OMEGA 2020;5:8534-8542. [PMID: 32337414 PMCID: PMC7178330 DOI: 10.1021/acsomega.9b04190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
20
Zhang Z, Yuan S, Yu M, Mannan MS, Wang Q. A Hazard Index for Chemical Logistic Warehouses with Modified Flammability Rating by Machine Learning Methods. ACS CHEMICAL HEALTH & SAFETY 2020. [DOI: 10.1021/acs.chas.9b00026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
21
Yuan S, Zhang Z, Sun Y, Kwon JSI, Mashuga CV. Liquid flammability ratings predicted by machine learning considering aerosolization. JOURNAL OF HAZARDOUS MATERIALS 2020;386:121640. [PMID: 31874762 DOI: 10.1016/j.jhazmat.2019.121640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
22
Wang B, Zhou L, Liu X, Xu K, Wang Q. Prediction of superheat limit temperatures for fuel mixtures using quantitative structure-property relationship model. J Loss Prev Process Ind 2020. [DOI: 10.1016/j.jlp.2020.104087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
23
Sun Y, Wang J, Zhu W, Yuan S, Hong Y, Mannan MS, Wilhite B. Development of Consequent Models for Three Categories of Fire through Artificial Neural Networks. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
24
Jiao Z, Yuan S, Zhang Z, Wang Q. Machine learning prediction of hydrocarbon mixture lower flammability limits using quantitative structure‐property relationship models. PROCESS SAFETY PROGRESS 2019. [DOI: 10.1002/prs.12103] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
25
Yuan S, Jiao Z, Quddus N, Kwon JSII, Mashuga CV. Developing Quantitative Structure–Property Relationship Models To Predict the Upper Flammability Limit Using Machine Learning. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05938] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
26
Owolabi TO, Suleiman MA, Adeyemo HB, Akande KO, Alhiyafi J, Olatunji SO. Estimation of minimum ignition energy of explosive chemicals using gravitational search algorithm based support vector regression. J Loss Prev Process Ind 2019. [DOI: 10.1016/j.jlp.2018.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
27
Wang B, Xu K, Wang Q. Prediction of upper flammability limits for fuel mixtures using quantitative structure–property relationship models. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1483350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
28
Liu L, Chen W, Li Y. A statistical study of proton conduction in Nafion®-based composite membranes: Prediction, filler selection and fabrication methods. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
29
Wang B, Zhou L, Xu K, Wang Q. Fast prediction of minimum ignition energy from molecular structure using simple QSPR model. J Loss Prev Process Ind 2017. [DOI: 10.1016/j.jlp.2017.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
30
A modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model for predicting liquid viscosity of pure organic compounds. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0173-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA