1
|
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023; 123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic hydrogenation of esters and carboxylic acids represents a fundamental and important class of organic transformations, which is widely applied in energy, environmental, agricultural, and pharmaceutical industries. Due to the low reactivity of the carbonyl group in carboxylic acids and esters, this type of reaction is, however, rather challenging. Hence, specifically active catalysts are required to achieve a satisfactory yield. Nevertheless, in recent years, remarkable progress has been made on the development of catalysts for this type of reaction, especially heterogeneous catalysts, which are generally dominating in industry. Here in this review, we discuss the recent breakthroughs as well as milestone achievements for the hydrogenation of industrially important carboxylic acids and esters utilizing heterogeneous catalysts. In addition, related catalytic hydrogenations that are considered of importance for the development of cleaner energy technologies and a circular chemical industry will be discussed in detail. Special attention is paid to the insights into the structure-activity relationship, which will help the readers to develop rational design strategies for the synthesis of more efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ruiyang Qu
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
2
|
Wang S, Cui Y, Zhao C, Liang C, Li C. In Situ Fabrication of the Al 2O 3@NiMo Core–Shell Catalyst from LDH for Low-Pressure Hydrodeoxygenation of Fatty Acid Methyl Ester. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shudong Wang
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Yuhan Cui
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Chenxi Zhao
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Changhai Liang
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Chuang Li
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
3
|
Adamska K, Smykała S, Zieliński S, Szymański D, Stelmachowski P, Kotarba A, Okal J, Kępiński L. TiO2 Supported RuRe Nanocatalysts for Soot Oxidation: Effect of Re and the Support Nature. Catal Letters 2022. [DOI: 10.1007/s10562-022-04066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Oxidation of soot over supported RuRe nanoparticles prepared by the microwave-polyol method. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02048-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe oxidation of soot over RuRe bimetallic nanoparticles (NPs) supported on γ-Al2O3 has been investigated. The catalysts were synthesized by a microwave-polyol method and characterized by ICP, BET, TEM, STEM-EDS, XRD and XPS techniques. The study revealed that the proper choice of the Re loading (0.4–2.0 wt%) is crucial for the catalytic behavior of the 2% Ru–Re/Al2O3 nano-catalysts.The best catalytic properties, in terms of overall activity and stability, were observed for the 2%Ru-0.8%Re/γ-Al2O3 nano-catalyst. The stability of all bimetallic 2% Ru–Re nano-catalysts in catalytic soot oxidation in the presence of oxygen is very high in contrast to the 2% Ru/γ-Al2O3 sample. The presence of rhenium in the catalytic system hinder the formation of large RuO2 agglomerates leading to a better dispersion of active ruthenium phase and a better catalytic performance. The relationship between the catalytic activity of Ru–Re/γ-Al2O3 and the synergetic roles of Ru and Re is discussed.
Collapse
|
5
|
Liu H, Jiang Y, Zhao H, Hou Z. Preparation of highly dispersed Cu catalysts from hydrotalcite precursor for the dehydrogenation of 1,4-butanediol. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Lluna‐Galán C, Izquierdo‐Aranda L, Adam R, Cabrero‐Antonino JR. Catalytic Reductive Alcohol Etherifications with Carbonyl-Based Compounds or CO 2 and Related Transformations for the Synthesis of Ether Derivatives. CHEMSUSCHEM 2021; 14:3744-3784. [PMID: 34237201 PMCID: PMC8518999 DOI: 10.1002/cssc.202101184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Ether derivatives have myriad applications in several areas of chemical industry and academia. Hence, the development of more effective and sustainable protocols for their production is highly desired. Among the different methodologies reported for ether synthesis, catalytic reductive alcohol etherifications with carbonyl-based moieties (aldehydes/ketones and carboxylic acid derivatives) have emerged in the last years as a potential tool. These processes constitute appealing routes for the selective production of both symmetrical and asymmetrical ethers (including O-heterocycles) with an increased molecular complexity. Likewise, ester-to-ether catalytic reductions and hydrogenative alcohol etherifications with CO2 to dialkoxymethanes and other acetals, albeit in less extent, have undergone important advances, too. In this Review, an update of the recent progresses in the area of catalytic reductive alcohol etherifications using carbonyl-based compounds and CO2 have been described with a special focus on organic synthetic applications and catalyst design. Complementarily, recent progress made in catalytic acetal/ketal-to-ether or ester-to-ether reductions and other related transformations have been also summarized.
Collapse
Affiliation(s)
- Carles Lluna‐Galán
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Luis Izquierdo‐Aranda
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Rosa Adam
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Jose R. Cabrero‐Antonino
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| |
Collapse
|
7
|
Gothe ML, Silva KLC, Figueredo AL, Fiorio JL, Rozendo J, Manduca B, Simizu V, Freire RS, Garcia MAS, Vidinha P. Rhenium – A Tuneable Player in Tailored Hydrogenation Catalysis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maitê L. Gothe
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Karla L. C. Silva
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Adolfo L. Figueredo
- Nucleus of Education and Research in Oil and Gas Department of Chemical Engineering Federal University of Rio Grande do Norte Av Senador Salgado Filho Natal 59078-970 Brazil
| | - Jhonatan L. Fiorio
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Jennifer Rozendo
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Bruno Manduca
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Vinício Simizu
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Renato S. Freire
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Marco A. S. Garcia
- Department of Chemistry Federal University of Maranhao Avenida dos Portugueses 1966 São Luís 65080-805 Brazil
| | - Pedro Vidinha
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| |
Collapse
|
8
|
Process Optimization for a Sustainable and Selective Conversion of Fumaric Acid into γ-Butyrolactone Over Pd-Re/SiO2. Catal Letters 2020. [DOI: 10.1007/s10562-020-03433-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Ly BK, Tapin B, Epron F, Pinel C, Especel C, Besson M. In situ preparation of bimetallic ReOx-Pd/TiO2 catalysts for selective aqueous-phase hydrogenation of succinic acid to 1,4-butanediol. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Ventura M, Marinas A, Domine ME. Catalytic Processes for Biomass-Derived Platform Molecules Valorisation. Top Catal 2020. [DOI: 10.1007/s11244-020-01309-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Li X, Luo J, Liang C. Hydrogenation of adipic acid to 1,6-hexanediol by supported bimetallic Ir-Re catalyst. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Yu Z, Lu X, Xiong J, Li X, Bai H, Ji N. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. CHEMSUSCHEM 2020; 13:2916-2930. [PMID: 32153131 DOI: 10.1002/cssc.202000175] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Indexed: 06/10/2023]
Abstract
As one of the most promising biomass-based platform molecules, γ-valerolactone (GVL) can be synthesized from a variety of lignocellulosic feedstocks through different hydrogen supply pathways. Among these transformation routes, the hydrogenation of levulinic acid (LA) to GVL by using formic acid (FA) as the internal hydrogen source is regarded as a critical path for the sustainable development of renewable energy systems. Although a large number of studies on the synthesis of GVL have been reported, the FA/LA catalytic system has not been interpreted as thoroughly as it should be. In this Minireview, core concerns are focused on key issues and their effects in this FA/LA catalytic system. The catalytic mechanism, together with competitive adsorption behavior between FA and LA on heterogeneous catalysts, is presented. The effects of active metal species and catalyst supports on the overall catalytic performance are summarized, and the influences of key condition parameters, including the time, temperature, FA/LA molar ratios, and aqueous solvent, are discussed. In particular, impacts and improvements of coke deposition and metal leaching, which could greatly affect the catalyst stability, are analyzed in detail. Additionally, several feasible suggestions for the enhancement of the catalytic efficiency and stability are also proposed.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Jian Xiong
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Xiaoyun Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Hui Bai
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
13
|
Heisig C, Diedenhoven J, Jensen C, Gehrke H, Turek T. Selective Hydrogenation of Biomass‐Derived Succinic Acid: Reaction Network and Kinetics. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carina Heisig
- Clausthal University of TechnologyInstitute of Chemical and Electrochemical Process Engineering Leibnizstrasse 17 38678 Clausthal-Zellerfeld Germany
| | - Jelka Diedenhoven
- Clausthal University of TechnologyInstitute of Chemical and Electrochemical Process Engineering Leibnizstrasse 17 38678 Clausthal-Zellerfeld Germany
- Covestro Deutschland AG Kaiser-Wilhelm-Allee 60 51373 Leverkusen Germany
| | - Christopher Jensen
- thyssenkrupp Industrial Solutions AG Neubeckumer Strasse 127 59320 Ennigerloh Germany
| | - Helmut Gehrke
- thyssenkrupp Industrial Solutions AG Neubeckumer Strasse 127 59320 Ennigerloh Germany
| | - Thomas Turek
- Clausthal University of TechnologyInstitute of Chemical and Electrochemical Process Engineering Leibnizstrasse 17 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
14
|
Brzezinska M, Niemeier J, Louven Y, Keller N, Palkovits R, Ruppert AM. TiO 2 supported Ru catalysts for the hydrogenation of succinic acid: influence of the support. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01446j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The TiO2 support composition and the reduction method impact both metal–support interaction and Ru nanoparticle size driving the catalyst performances in succinic acid hydrogenation.
Collapse
Affiliation(s)
- Magdalena Brzezinska
- Institute of General and Ecological Chemistry
- Faculty of Chemistry
- Łódź University of Technology
- 90-924 Łódź
- Poland
| | - Johannes Niemeier
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Yannik Louven
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, ICPEES
- CNRS
- University of Strasbourg
- 67087 Strasbourg
- France
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Agnieszka M. Ruppert
- Institute of General and Ecological Chemistry
- Faculty of Chemistry
- Łódź University of Technology
- 90-924 Łódź
- Poland
| |
Collapse
|
15
|
Effect of Temperature, Pressure, and Reaction Time on Hydrogenation of Hexadecanoic Acid to 1-Hexadecanol Using a Ru-Sn(3.0)/C Catalyst. JURNAL KIMIA SAINS DAN APLIKASI 2019. [DOI: 10.14710/jksa.22.4.112-122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effect of temperature, initial H2 pressure, and reaction time on the selective hydrogenation of hexadecanoate acid to 1-hexadecanol over bimetallic ruthenium-tin supported on carbon (denoted as Ru-Sn(3.0)/C; 3.0 is molar ratio Ru/Sn) has been systematically investigated. Ru-Sn(3.0)/C catalyst was synthesized using a simple hydrothermal method at temperature of 150oC for 24 h followed by reduction with hydrogen at at 400oC and 500°C for 1.5 h. The XRD patterns of reduced Ru-Sn(3.0)/C showed a series diffraction peaks of bimetallic alloy Ru3Sn7 at 2θ = 30.0°; 35.0°; and 41.3° which are recognized as (310), (321), and (411) reflection planes present. The N2-adsorpsion/desorption profiles confirmed that the catalyst structure was microporous and mesoporous sizes with specific surface area (SBET) of 207 m2/g, pore volume (VpBJH) 0.1015 cm3/g, and pore diameter (dpBJH) 1,21 nm. NH3-TPD profile shows that the desorption temperature of 157.1°C was a weak acidity (Bronsted acid site) with amount of acid sites was 0.117 mmol/g. Meanwhile, the desorption temperature of 660.3°C was a strong acidity (Lewis acid site) with amount of acid sites was 0.826 mmol/g. The highest conversion of hexadecanoic acid (86.24%) was achieved at reaction temperature180°C, initial H2 pressure of 5.0 MPa, a reaction time of 6 h in ethanol solvent and afforded yield of hexadecane (0.15%), 1-hexadecanol (4.27%), and ethyl hexadecanoate (81.82%). At reaction temperature of 150°C, H2 of 3.0 MPa, and a reaction time of 18 h, 73.27% of hexadecanoic acid was converted to 1-hexadecanol (0.24%) and ethyl hexadecanoate (73,03%).
Collapse
|
16
|
Di X, Lafaye G, Especel C, Epron F, Qi J, Li C, Liang C. Supported Co-Re Bimetallic Catalysts with Different Structures as Efficient Catalysts for Hydrogenation of Citral. CHEMSUSCHEM 2019; 12:807-823. [PMID: 30620120 DOI: 10.1002/cssc.201802744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Bimetallic Co-Re/TiO2 catalysts were developed for efficient citral hydrogenation. Bimetallic catalysts were prepared by co-impregnation (CI), successive-impregnation (SI), and surface redox method (SR). The arrangement between the Co and Re species on these systems was fully characterized using several techniques (TEM-energy-dispersive X-ray spectroscopy, H2 temperature-programmed reduction, temperature-programmed desorption, XRD, CO FTIR spectroscopy, model reaction of cyclohexane dehydrogenation), and their catalytic performances were evaluated for the selective hydrogenation of citral towards unsaturated alcohols. The Re and Co species are completely isolated in the CI sample, presenting a very limited Co-Re interaction. In SI samples, the metals coexist in a Janus-type structure with a concentration of Re around Co. Decoration/core-shell structures are observed for SR samples resulting from the redox exchange between the metallic surface of the parent Co/TiO2 catalyst and the Re7+ species of the modifier precursor salt. The contact degree between the two metals gradually increases as follows: Isolated structure (CI)<Janus-type structure(SI)<decoration/core-shell structure (SR). The unchanging structure of all SI samples independent of the Re loading leads to similar electron transfer, and the increase in Re content results in agglomeration of Re, thus decreasing the catalytic activity. Density-of-state (DOS) calculations prove that the high valence of Re is a disadvantage for the hydrogenation reaction. For SR samples, the increase of Re loading contributes to the electron transfer from Re to Co that is consistent with a change of structure from decoration to core-shell. The lack of directly accessible Co atoms for SR catalysts with fully coated structure decreases the efficiency of Re reduction. The presence of Co-Re interaction resulting from the close contact between metals plays a dominant role in the hydrogenation of citral. Nevertheless, an excessively high contact degree is unnecessary for citral hydrogenation once Co-Re interaction has formed.
Collapse
Affiliation(s)
- Xin Di
- Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian City, Liaoning Province, P.R. China
- Institut de Chimie des Milieux & Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, 4 rue Michel Brunet, 86073, Poitiers, France
| | - Gwendoline Lafaye
- Institut de Chimie des Milieux & Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, 4 rue Michel Brunet, 86073, Poitiers, France
| | - Catherine Especel
- Institut de Chimie des Milieux & Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, 4 rue Michel Brunet, 86073, Poitiers, France
| | - Florence Epron
- Institut de Chimie des Milieux & Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, 4 rue Michel Brunet, 86073, Poitiers, France
| | - Ji Qi
- Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian City, Liaoning Province, P.R. China
| | - Chuang Li
- Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian City, Liaoning Province, P.R. China
| | - Changhai Liang
- Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian City, Liaoning Province, P.R. China
| |
Collapse
|
17
|
Abstract
The production of chemicals from biomass, a renewable feedstock, is highly desirable in replacing petrochemicals to make biorefineries more economical. The best approach to compete with fossil-based refineries is the upgradation of biomass in integrated biorefineries. The integrated biorefineries employed various biomass feedstocks and conversion technologies to produce biofuels and bio-based chemicals. Bio-based chemicals can help to replace a large fraction of industrial chemicals and materials from fossil resources. Biomass-derived chemicals, such as 5-hydroxymethylfurfural (5-HMF), levulinic acid, furfurals, sugar alcohols, lactic acid, succinic acid, and phenols, are considered platform chemicals. These platform chemicals can be further used for the production of a variety of important chemicals on an industrial scale. However, current industrial production relies on relatively old and inefficient strategies and low production yields, which have decreased their competitiveness with fossil-based alternatives. The aim of the presented review is to provide a survey of past and current strategies used to achieve a sustainable conversion of biomass to platform chemicals. This review provides an overview of the chemicals obtained, based on the major components of lignocellulosic biomass, sugars, and lignin. First, important platform chemicals derived from the catalytic conversion of biomass were outlined. Later, the targeted chemicals that can be potentially manufactured from the starting or platform materials were discussed in detail. Despite significant advances, however, low yields, complex multistep synthesis processes, difficulties in purification, high costs, and the deactivation of catalysts are still hurdles for large-scale competitive biorefineries. These challenges could be overcome by single-step catalytic conversions using highly efficient and selective catalysts and exploring purification and separation technologies.
Collapse
|
18
|
Jin X, Fang T, Wang J, Liu M, Pan S, Subramaniam B, Shen J, Yang C, Chaudhari RV. Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. CHEM REC 2018; 19:1952-1994. [PMID: 30474917 DOI: 10.1002/tcr.201800144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Indexed: 11/12/2022]
Abstract
Conversion of biomass to chemicals provides essential products to human society from renewable resources. In this context, achieving atom-economical and energy-efficient conversion with high selectivity towards target products remains a key challenge. Recent developments in nanostructured catalysts address this challenge reporting remarkable performances in shape and morphology dependent catalysis by metals on nano scale in energy and environmental applications. In this review, most recent advances in synthesis of heterogeneous nanomaterials, surface characterization and catalytic performances for hydrogenation and oxidation for biorenewables with plausible mechanism have been discussed. The perspectives obtained from this review paper will provide insights into rational design of active, selective and stable catalytic materials for sustainable production of value-added chemicals from biomass resources.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Tianqi Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Siyuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Bala Subramaniam
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Raghunath V Chaudhari
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| |
Collapse
|
19
|
Cascade Strategy for the Tunable Catalytic Valorization of Levulinic Acid and γ-Valerolactone to 2-Methyltetrahydrofuran and Alcohols. Catalysts 2018. [DOI: 10.3390/catal8070277] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Di X, Li C, Lafaye G, Especel C, Epron F, Liang C. Influence of Re–M interactions in Re–M/C bimetallic catalysts prepared by a microwave-assisted thermolytic method on aqueous-phase hydrogenation of succinic acid. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01039g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Re–M/C catalysts were simply synthesized and a kinetic study was performed to provide insight into the effect of Re–M interactions.
Collapse
Affiliation(s)
- Xin Di
- Laboratory of Advanced Materials and Catalytic Engineering
- Dalian University of Technology
- Dalian 116024
- P.R. China
| | - Chuang Li
- Laboratory of Advanced Materials and Catalytic Engineering
- Dalian University of Technology
- Dalian 116024
- P.R. China
| | - Gwendoline Lafaye
- Institut de Chimie, des Milieux & Matériaux (IC2MP)
- Université de Poitiers
- Poitiers 86073
- France
| | - Catherine Especel
- Institut de Chimie, des Milieux & Matériaux (IC2MP)
- Université de Poitiers
- Poitiers 86073
- France
| | - Florence Epron
- Institut de Chimie, des Milieux & Matériaux (IC2MP)
- Université de Poitiers
- Poitiers 86073
- France
| | - Changhai Liang
- Laboratory of Advanced Materials and Catalytic Engineering
- Dalian University of Technology
- Dalian 116024
- P.R. China
| |
Collapse
|