1
|
Liu C, Hou J, Yan M, Zhang J, Gebrekiros Alemayehu H, Zheng W, Liu P, Tang Z, Li L. Regulating the Layered Stacking of a Covalent Triazine Framework Membrane for Aromatic/Aliphatic Separation. Angew Chem Int Ed Engl 2024; 63:e202320137. [PMID: 38362792 DOI: 10.1002/anie.202320137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Membrane separation of aromatics and aliphatics is a crucial requirement in chemical and petroleum industries. However, this task presents a significant challenge due to the lack of membrane materials that can endure harsh solvents, exhibit molecular specificity, and facilitate easy processing. Herein, we present a novel approach to fabricate a covalent triazine framework (CTF) membrane by employing a mix-monomer strategy. By incorporating a spatial monomer alongside a planar monomer, we were able to subtly modulate both the pore aperture and membrane affinity, enabling preferential permeation of aromatics over aliphatics with molecular weight below 200 Dalton (Da). Consequently, we achieved successful all-liquid phase separation of aromatic/aliphatic mixtures. Our investigation revealed that the synergistic effects of size sieving and the affinity between the permeating molecules and the membrane played a pivotal role in separating these closely resembling species. Furthermore, the membrane exhibited remarkable robustness under practical operating conditions, including prolonged operation time, various feed compositions, different applied pressure, and multiple feed components. This versatile strategy offers a feasible approach to fabricate membranes with molecule selectivity toward aromatic/aliphatic mixtures, taking a significant step forward in addressing the grand challenge of separating small organic molecules through membrane technology.
Collapse
Affiliation(s)
- Cuijing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, 710055, Xi'an, P. R. China
| | - Junjun Hou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Mingzheng Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Haftu Gebrekiros Alemayehu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Wei Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
| | - Pengchao Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Lianshan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
2
|
Palomar J, Lemus J, Navarro P, Moya C, Santiago R, Hospital-Benito D, Hernández E. Process Simulation and Optimization on Ionic Liquids. Chem Rev 2024; 124:1649-1737. [PMID: 38320111 PMCID: PMC10906004 DOI: 10.1021/acs.chemrev.3c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Ionic liquids (ILs) are promising alternative compounds that enable the development of technologies based on their unique properties as solvents or catalysts. These technologies require integrated product and process designs to select ILs with optimal process performances at an industrial scale to promote cost-effective and sustainable technologies. The digital era and multiscale research methodologies have changed the paradigm from experiment-oriented to hybrid experimental-computational developments guided by process engineering. This Review summarizes the relevant contributions (>300 research papers) of process simulations to advance IL-based technology developments by guiding experimental research efforts and enhancing industrial transferability. Robust simulation methodologies, mostly based on predictive COSMO-SAC/RS and UNIFAC models in Aspen Plus software, were applied to analyze key IL applications: physical and chemical CO2 capture, CO2 conversion, gas separation, liquid-liquid extraction, extractive distillation, refrigeration cycles, and biorefinery. The contributions concern the IL selection criteria, operational unit design, equipment sizing, technoeconomic and environmental analyses, and process optimization to promote the competitiveness of the proposed IL-based technologies. Process simulation revealed that multiscale research strategies enable advancement in the technological development of IL applications by focusing research efforts to overcome the limitations and exploit the excellent properties of ILs.
Collapse
Affiliation(s)
- Jose Palomar
- Chemical
Engineering Department, Autonomous University
of Madrid, Calle Tomás y Valiente 7, 28049 Madrid, Spain
| | - Jesús Lemus
- Chemical
Engineering Department, Autonomous University
of Madrid, Calle Tomás y Valiente 7, 28049 Madrid, Spain
| | - Pablo Navarro
- Chemical
Engineering Department, Autonomous University
of Madrid, Calle Tomás y Valiente 7, 28049 Madrid, Spain
| | - Cristian Moya
- Departamento
de Tecnología Química, Energética y Mecánica, Universidad Rey Juan Carlos, 28933 Madrid, Spain
| | - Rubén Santiago
- Departamento
de Ingeniería Eléctrica, Electrónica, Control,
Telemática y Química aplicada a la Ingeniería,
ETS de Ingenieros Industriales, Universidad
Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Daniel Hospital-Benito
- Chemical
Engineering Department, Autonomous University
of Madrid, Calle Tomás y Valiente 7, 28049 Madrid, Spain
| | - Elisa Hernández
- Chemical
Engineering Department, Autonomous University
of Madrid, Calle Tomás y Valiente 7, 28049 Madrid, Spain
| |
Collapse
|
3
|
Yu H, Li X, Geng C, Wu X, Zhang F, Tian S, Zhou Z, Ren Z. Low-cost N-methylpyrrolidone-based coordinated ionic liquids as extractants for separating aromatics from aliphatics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
McNeeley A, Tsai C, Lin S, Liu YA. Development of
Energy‐Optimum
Aromatic Extraction Processes Using Ionic Liquid [
EMIM
][
NTf2
]. AIChE J 2022. [DOI: 10.1002/aic.17888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam McNeeley
- AspenTech Center of Excellence in Process System Engineering, Department of Chemical Engineering, Virginia Polytechnic Institute and State University Blacksburg Virginia
| | - Chang‐Che Tsai
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Shiang‐Tai Lin
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Y. A. Liu
- AspenTech Center of Excellence in Process System Engineering, Department of Chemical Engineering, Virginia Polytechnic Institute and State University Blacksburg Virginia
| |
Collapse
|
5
|
Schuur B, Brouwer T, Sprakel LMJ. Recent Developments in Solvent-Based Fluid Separations. Annu Rev Chem Biomol Eng 2021; 12:573-591. [PMID: 33852351 DOI: 10.1146/annurev-chembioeng-102620-015346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The most important developments in solvent-based fluid separations, separations involving at least one fluid phase, are reviewed. After a brief introduction and discussion on general solvent trends observed in all fields of application, several specific fields are discussed. Important solvent trends include replacement of traditional molecular solvents by ionic liquids and deep eutectic solvents and, more recently, increasing discussion around bio-based solvents in some application fields. Furthermore, stimuli-responsive systems are discussed; the most significant developments in this field are seen for CO2-switchable and redox-responsive solvents. Discussed fields of application include hydrocarbons separations, carbon capture, biorefineries, and metals separations. For all but the hydrocarbons separations, newly reported electrochemically mediated separations seem to offer exciting new windows of opportunities.
Collapse
Affiliation(s)
- Boelo Schuur
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; , ,
| | - Thomas Brouwer
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; , ,
| | - Lisette M J Sprakel
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; , ,
| |
Collapse
|
6
|
Li J, Li T, Peng C, Liu H. Extractive Distillation with Ionic Liquid Entrainers for the Separation of Acetonitrile and Water. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05907] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinlong Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology and School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Tingting Li
- State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Changjun Peng
- State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|