1
|
Pan B, Karadaghi LR, Brutchey RL, Malmstadt N. A Multistep, Multicomponent Extraction and Separation Microfluidic Route to Recycle Water-Miscible Ionic Liquid Solvents. Ind Eng Chem Res 2024; 63:489-497. [PMID: 38223501 PMCID: PMC10785803 DOI: 10.1021/acs.iecr.3c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Recycling ionic liquid (IL) solvents can reduce the lifecycle cost of these expensive solvents. Liquid-liquid extraction is the most straightforward approach to purify IL solvents and is typically performed with an immiscible washing agent (e.g., water). Herein, we describe a recycling route for water-miscible ILs in which direct recycling is usually challenging. We use hydrophobic ILs as accommodating agents to draw the water-miscible IL from the aqueous washing stream. A biphasic slug flow of the mixed ILs and water is then separated by using a membrane. The water-miscible IL can then be drawn out from the mixed IL phase with acidified water and dried under vacuum. Both the water-miscible IL and the accommodating agent are then recycled. Here, we demonstrated a proof-of-concept of this process by recycling 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM-OTf) in the presence of the accommodating agent 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIM-NTf2) and acidified water. We then demonstrated the capacity to recycle 1-butyl-1-methylpyrrolidinium triflate (BMPYRR-OTf) from a realistic synthetic application: Pt nanoparticle synthesis in the water-miscible IL.
Collapse
Affiliation(s)
- Bin Pan
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, California 90089-1211, United States
| | - Lanja R. Karadaghi
- Department
of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, California 90089-0744, United States
| | - Richard L. Brutchey
- Department
of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, California 90089-0744, United States
| | - Noah Malmstadt
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, California 90089-1211, United States
- Department
of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, California 90089-0744, United States
- Department
of Biomedical Engineering, University of
Southern California, 1042 Downey Way, Los Angeles, California 90089-0260, United States
- USC
Norris Comprehensive Cancer Center, University
of Southern California, 1441 Eastlake Ave, Los Angeles, California 90033, United States
| |
Collapse
|
2
|
Nie M, Ye G, Song N, Shi S, Qian G, Duan X, Zhou X, Yang Z, Zhang J. Ultrathin Hydrophobic Inorganic Membranes via Femtosecond Laser Engraving for Efficient and Stable Extraction in a Microseparator. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mengxia Nie
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guanghua Ye
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Nan Song
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shudong Shi
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhirong Yang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Damilos S, Alissandratos I, Panariello L, Radhakrishnan ANP, Cao E, Wu G, Besenhard MO, Kulkarni AA, Makatsoris C, Gavriilidis A. Continuous citrate‐capped gold nanoparticle synthesis in a two‐phase flow reactor. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00172-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractA continuous manufacturing platform was developed for the synthesis of aqueous colloidal 10–20 nm gold nanoparticles (Au NPs) in a flow reactor using chloroauric acid, sodium citrate and citric acid at 95 oC and 2.3 bar(a) pressure. The use of a two-phase flow system – using heptane as the continuous phase – prevented fouling on the reactor walls, while improving the residence time distribution. Continuous syntheses for up to 2 h demonstrated its potential application for continuous manufacturing, while live quality control was established using online UV-Vis photospectrometry that monitored the particle size and process yield. The synthesis was stable and reproducible over time for gold precursor concentration above 0.23 mM (after mixing), resulting in average particle size between 12 and 15 nm. A hydrophobic membrane separator provided successful separation of the aqueous and organic phases and collection of colloidal Au NPs in flow. Process yield increased at higher inlet flow rates (from 70 % to almost 100 %), due to lower residence time of the colloidal solution in the separator resulting in less fouling in the PTFE membrane. This study addresses the challenges for the translation of the synthesis from batch to flow and provides tools for the development of a continuous manufacturing platform for gold nanoparticles.Graphical abstract
Collapse
|
4
|
Naramittanakul A, Buttranon S, Petchsuk A, Chaiyen P, Weeranoppanant N. Development of a continuous-flow system with immobilized biocatalysts towards sustainable bioprocessing. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00189b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implementing immobilized biocatalysts in continuous-flow systems can enable a sustainable process through enhanced enzyme stability, better transport and process continuity as well as simplified recycle and downstream processing.
Collapse
Affiliation(s)
- Apisit Naramittanakul
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
5
|
Weeranoppanant N, Adamo A. In-Line Purification: A Key Component to Facilitate Drug Synthesis and Process Development in Medicinal Chemistry. ACS Med Chem Lett 2020; 11:9-15. [PMID: 31938456 DOI: 10.1021/acsmedchemlett.9b00491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
In-line purification is an important tool for flow chemistry. It enables effective handling of unstable intermediates and integration of multiple synthetic steps. The integrated flow synthesis is useful for drug synthesis and process development in medicinal chemistry. In this article, we overview current states of in-line purification methods. In particular, we focus on four common methods: scavenger column, distillation, nanofiltration, and extraction. Examples of their applications are provided.
Collapse
Affiliation(s)
- Nopphon Weeranoppanant
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Longhard Bangsaen Road, Muang, Chonburi 02131, Thailand
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley 555 Moo 1 Payupnai, Wangchan, Rayong 21210 Thailand
| | - Andrea Adamo
- Zaiput Flow Technologies, 300 Second Avenue, Waltham, Massachusetts 02451, United States
| |
Collapse
|
6
|
Radhakrishnan AP, Pradas M, Sorensen E, Kalliadasis S, Gavriilidis A. Hydrodynamic Characterization of Phase Separation in Devices with Microfabricated Capillaries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8199-8209. [PMID: 31184901 PMCID: PMC7007251 DOI: 10.1021/acs.langmuir.8b04202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Capillary microseparators have been gaining interest in downstream unit operations, especially for pharmaceutical, space, and nuclear applications, offering efficient separation of two-phase flows. In this work, a detailed analysis of the dynamics of gas?liquid separation at the single meniscus level helped to formulate a model to map the operability region of microseparation devices. A water?nitrogen segmented flow was separated in a microfabricated silicon-glass device, with a main channel (width, W = 600 ?m; height, H = 120 ?m) leading into an array of 276 capillaries (100 ?m long; width = 5 ?m facing the main channel and 25 ?m facing the liquid outlet), on both sides of the channel. At optimal pressure differences, the wetting phase (water) flowed through the capillaries into the liquid outlet, whereas the nonwetting phase (nitrogen) flowed past the capillaries into the gas outlet. A high-speed imaging methodology aided by computational analysis was used to quantify the length of the liquid slugs and their positions in the separation zone. It was observed that during stable separation, the position of the leading edge of the liquid slugs (advancing meniscus), which became stationary in the separation zone, was dependent only on the outlet pressure difference. The trailing edge of the liquid slugs (receding meniscus) approached the advancing meniscus at a constant speed, thus leading to a linear decrease of the liquid slug length. Close to the liquid-to-gas breakthrough point, that is, when water exited through the gas outlet, the advancing meniscus was no longer stationary, and the slug lengths decreased exponentially. The rates of decrease of the liquid slug length during separation were accurately estimated by the model, and the calculated liquid-to-gas breakthrough pressures agreed with experimental measurements.
Collapse
Affiliation(s)
- Anand
N. P. Radhakrishnan
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Marc Pradas
- School
of Mathematics & Statistics, Faculty of Science, Technology, Engineering
& Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, U.K.
| | - Eva Sorensen
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Serafim Kalliadasis
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Asterios Gavriilidis
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
7
|
Perspectives on the Use of Liquid Extraction for Radioisotope Purification. Molecules 2019; 24:molecules24020334. [PMID: 30669256 PMCID: PMC6359044 DOI: 10.3390/molecules24020334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
The reliable and efficient production of radioisotopes for diagnosis and therapy is becoming an increasingly important capability, due to their demonstrated utility in Nuclear Medicine applications. Starting from the first processes involving the separation of 99mTc from irradiated materials, several methods and concepts have been developed to selectively extract the radioisotopes of interest. Even though the initial methods were based on liquid-liquid extraction (LLE) approaches, the perceived difficulty in automating such processes has slowly moved the focus towards resin separation methods, whose basic chemical principles are often similar to the LLE ones in terms of chelators and phases. However, the emerging field of flow chemistry allows LLE to be easily automated and operated in a continuous manner, resulting in an even improved efficiency and reliability. In this contribution, we will outline the fundamentals of LLE processes and their translation into flow-based apparatuses; in addition, we will provide examples of radioisotope separations that have been achieved using LLE methods. This article is intended to offer insights about the future potential of LLE to purify medically relevant radioisotopes.
Collapse
|
8
|
Pedersen KS, Imbrogno J, Fonslet J, Lusardi M, Jensen KF, Zhuravlev F. Liquid–liquid extraction in flow of the radioisotope titanium-45 for positron emission tomography applications. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00175h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continuous liquid–liquid extraction of the PET radioisotope 45Ti using a membrane-based separator allows for efficient 45Ti recovery and radiolabeling.
Collapse
Affiliation(s)
- Kristina Søborg Pedersen
- Technical University of Denmark
- Center for Nuclear Technologies
- 4000 Roskilde
- Denmark
- Department of Chemical Engineering
| | - Joseph Imbrogno
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Jesper Fonslet
- Technical University of Denmark
- Center for Nuclear Technologies
- 4000 Roskilde
- Denmark
| | - Marcella Lusardi
- Department of Materials Science and Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Klavs F. Jensen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Materials Science and Engineering
| | - Fedor Zhuravlev
- Technical University of Denmark
- Center for Nuclear Technologies
- 4000 Roskilde
- Denmark
| |
Collapse
|