1
|
Zhou Z, Wang X, Jiang R, Chen X, Hou H. Synthesis of stacked spherical hierarchical SAPO-34 zeolite and its methanol to olefin catalytic performance. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Yu W, Wu X, Cheng B, Tao T, Min X, Mi R, Huang Z, Fang M, Liu Y. Synthesis and Applications of SAPO-34 Molecular Sieves. Chemistry 2021; 28:e202102787. [PMID: 34961998 DOI: 10.1002/chem.202102787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 11/06/2022]
Abstract
Silicoaluminophosphate zeolite (SAPO-34) has been attracting increasing attention due to its excellent form selection and controllability in the chemical industry, as well as being one of the best industrial catalysts for methanol-to-olefin (MTO) reaction conversion. However, as a microporous molecular sieve, SAPO-34 easily generates carbon deposition and rapidly becomes inactivated. Therefore, it is necessary to reduce the crystal size of the zeolite or to introduce secondary macropores into the zeolite crystal to form a hierarchical structure in order to improve the catalytic effect. In this review, the synthesis methods of conventional SAPO-34 molecular sieves, hierarchical SAPO-34 molecular sieves and nanosized SAPO-34 molecular sieves are introduced, and the properties of the synthesized SAPO-34 molecular sieves are described, including the phase, morphology, pore structure, acid source, and catalytic performance, in particular with respect to the synthesis of hierarchical SAPO-34 molecular sieves. We hope that the review can provide guidance to the preparation of the SAPO-34 catalysts, and stimulate the future development of high-performance hierarchical SAPO-34 catalysts to meet the growing demands of the material and chemical industries.
Collapse
Affiliation(s)
- Wenhe Yu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geoscience (Beijing), 29 Xueyuan Road, 100083, Beijing, P. R. China
| | - Xiaowen Wu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geoscience (Beijing), 29 Xueyuan Road, 100083, Beijing, P. R. China
| | - Bohao Cheng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geoscience (Beijing), 29 Xueyuan Road, 100083, Beijing, P. R. China
| | - Tianyi Tao
- Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Xin Min
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geoscience (Beijing), 29 Xueyuan Road, 100083, Beijing, P. R. China
| | - Ruiyu Mi
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geoscience (Beijing), 29 Xueyuan Road, 100083, Beijing, P. R. China
| | - Zhaohui Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geoscience (Beijing), 29 Xueyuan Road, 100083, Beijing, P. R. China
| | - Minghao Fang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geoscience (Beijing), 29 Xueyuan Road, 100083, Beijing, P. R. China
| | - Yangai Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geoscience (Beijing), 29 Xueyuan Road, 100083, Beijing, P. R. China
| |
Collapse
|
3
|
Li ZH, Li XF, Di CY, Dou T, Chen SL. A Green and Cost-Effective Synthesis of Hierarchical SAPO-34 through Dry Gel Conversion and Its Performance in a Methanol-to-Olefin Reaction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi-Hong Li
- State Key Laboratory of Heavy Oil Processing and Department of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiao-Feng Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Chun-Yu Di
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Tao Dou
- State Key Laboratory of Heavy Oil Processing and Department of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Sheng-Li Chen
- State Key Laboratory of Heavy Oil Processing and Department of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
4
|
Abstract
Chloromethanes are a group of volatile organic compounds that are harmful to the environment and human health. Abundant studies have verified that hydrodechlorination might be an effective treatment to remove these chlorinated pollutants. The most outstanding advantages of this technique are the moderate operating conditions used and the possibility of obtaining less hazardous valuable products. This review presents a global analysis of experimental and theoretical studies regarding the hydrodechlorination of chloromethanes. The catalysts used and their synthesis methods are summarized. Their physicochemical properties are analyzed in order to deeply understand their influence on the catalytic performance. Moreover, the main causes of the catalyst deactivation are explained, and prevention and regeneration methods are suggested. The reaction systems used and the effect of the operating conditions on the catalytic activity are also analyzed. Besides, the mechanisms and kinetics of the process at the atomic level are reviewed. Finally, a new perspective for the upgrading of chloromethanes, via hydrodechlorination, to valuable hydrocarbons for industry, such as light olefins, is discussed.
Collapse
|
5
|
Sun C, Wang Y, Chen H, Wang X, Wang C, Zhang X. Seed-assisted synthesis of hierarchical SAPO-18/34 intergrowth and SAPO-34 zeolites and their catalytic performance for the methanol-to-olefin reaction. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Kolesnichenko NV, Ezhova NN, Snatenkova YM. Lower olefins from methane: recent advances. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Modern methods for methane conversion to lower olefins having from 2 to 4 carbon atoms per molecule are generalized. Multistage processing of methane into ethylene and propylene via syngas or methyl chloride and methods for direct conversion of CH4 to ethylene are described. Direct conversion of syngas to olefins as well as indirect routes of the process via methanol or dimethyl ether are considered. Particular attention is paid to innovative methods of olefin synthesis. Recent achievements in the design of catalysts and development of new techniques for efficient implementation of oxidative coupling of methane and methanol conversion to olefins are analyzed and systematized. Advances in commercializing these processes are pointed out. Novel catalysts for Fischer – Tropsch synthesis of lower olefins from syngas and for innovative technique using oxide – zeolite hybrid catalytic systems are described. The promise of a new route to lower olefins by methane conversion via dimethyl ether is shown. Prospects for the synthesis of lower olefins via methyl chloride and using non-oxidative coupling of methane are discussed. The most efficient processes used for processing of methane to lower olefins are compared on the basis of degree of conversion of carbonaceous feed, possibility to integrate with available full-scale production, number of reaction stages and thermal load distribution.
The bibliography includes 346 references.
Collapse
|
8
|
Zhai M, Li L, Ba Y, Zhu K, Zhou X. Fabricating ZSM-23 with reduced aspect ratio through ball-milling and recrystallization: Synthesis, structure and catalytic performance in N-heptane hydroisomerization. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Ding H, Ding J, Liu W, Zhao X, Chi Q, Zhu K, Zhou X, Yang W. A phase-transfer crystallization pathway to synthesize ultrasmall silicoaluminophosphate for enhanced catalytic conversion of dimethylether-to-olefin. CrystEngComm 2019. [DOI: 10.1039/c8ce01752b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This work reports a new phase-transfer crystallization pathway to generate ultrasmall silicoaluminophosphate SAPO-34 for enhanced catalytic dimethylether-to-olefin conversion.
Collapse
Affiliation(s)
- Hongxin Ding
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jiajia Ding
- Shanghai Research Institute of Petrochemical Technology
- Sinopec
- Shanghai 201208
- P. R. China
| | - Wei Liu
- Shanghai Research Institute of Petrochemical Technology
- Sinopec
- Shanghai 201208
- P. R. China
| | - Xiaoling Zhao
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Qijin Chi
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Kake Zhu
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weimin Yang
- Shanghai Research Institute of Petrochemical Technology
- Sinopec
- Shanghai 201208
- P. R. China
| |
Collapse
|