1
|
Yang L, Liu Y, Zheng F, Shen F, Liu B, Krishna R, Zhang Z, Yang Q, Ren Q, Bao Z. Leveraging Diffusion Kinetics to Reverse Propane/Propylene Adsorption in Zeolitic Imidazolate Framework-8. ACS NANO 2024; 18:3614-3626. [PMID: 38227334 DOI: 10.1021/acsnano.3c11385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The separation challenge posed by propylene/propane mixtures arises from their nearly identical molecular sizes and physicochemical properties. Metal-organic frameworks (MOFs) have demonstrated potential in addressing this challenge through the precision tailoring of pore sizes and surface chemistry. However, introducing modifications at the molecular level remains a considerable hurdle. This work presents an approach to reversibly tune the propylene/propane adsorption preference in zeolitic imidazolate framework-8 (ZIF-8) by manipulating the particle size and gas flow rate. Systematically increasing the ZIF-8 crystals from 9 to 224 μm restricts propane diffusion, thereby reversing its preferential adsorption over propylene. Furthermore, raising the gas flow rate of mixed propylene/propane shifts the rate-determining breakthrough step from thermodynamic equilibrium to kinetics, again reversing the adsorption preference in a particular ZIF-8 sample. We propose "dynamic selectivity (Sd(t))" as a concept that incorporates both thermodynamic and kinetic factors to elucidate these unexpected findings. Moreover, the driving force equation, grounded on the concept of Sd(t), has improved the precision and stability of the computational simulation for fixed-bed adsorption processes. This work underscores the potential of diffusion-based modulation, implemented through manageable external changes, as a viable strategy to optimize separation performance in porous adsorbent materials.
Collapse
Affiliation(s)
- Linghe Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P.R. China
| | - Fuxing Shen
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P.R. China
| | - Baojian Liu
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P.R. China
| | - Rajamani Krishna
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P.R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P.R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P.R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P.R. China
| |
Collapse
|
2
|
Xiao Y, Chen Y, Wang W, Yang H, Hong AN, Bu X, Feng P. Simultaneous Control of Flexibility and Rigidity in Pore-Space-Partitioned Metal-Organic Frameworks. J Am Chem Soc 2023; 145:10980-10986. [PMID: 37163701 DOI: 10.1021/jacs.3c03130] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Flexi-MOFs are typically limited to low-connected (<9) frameworks. Here we report a platform-wide approach capable of creating a family of high-connected materials (collectively called CPM-220) that integrate exceptional framework flexibility with high rigidity. We show that the multi-module nature of the pore-space-partitioned pacs (partitioned acs net) platform allows us to introduce flexibility as well as to simultaneously impose high rigidity in a tunable module-specific fashion. The inter-modular synergy has remarkable macro-morphological and sub-nanometer structural impacts. A prominent manifestation at both length scales is the retention of X-ray-quality single crystallinity despite huge hexagonal c-axial contraction (≈ 30%) and harsh sample treatment such as degassing and sorption cycles. CPM-220 sets multiple precedents and benchmarks on the pacs platform in both structural and sorption properties. They possess exceptionally high benzene/cyclohexane selectivity, unusual C3H6 and C3H8 isotherms, and promising separation performance for small gas molecules such as C2H2/CO2.
Collapse
Affiliation(s)
- Yuchen Xiao
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Wei Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Huajun Yang
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Anh N Hong
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Yao S, Liu Q, Zhu Q, Li Y, Ueda W, Zhang Z. Investigation of the Synthesis of Zeolitic Vanadotungstate and its Use in the Separation of Propylene/Propane at High Temperature and Humidity. Inorg Chem 2022; 61:10133-10143. [PMID: 35737438 DOI: 10.1021/acs.inorgchem.2c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic conditions for the zeolitic octahedral metal oxide based on vanadotungstate are studied. The temperature, time, acidity, W/V ratio, cation species, and concentration affect the resulting materials. The study shows that mixing tungstate and VO2+ in an aqueous solution generates cubane units ([W4O16]8-) at room temperature. The cubane units assemble with VO2+ immediately to form a solid with an amorphous phase and nonporosity, which further crystallizes under a hydrothermal condition to form the crystalline microporous vanadotungstate. The zeolitic vanadotungstates act as effective adsorbents for the separation of propylene/propane. The active materials effectively separate propylene/propane even at high temperatures and high humidities.
Collapse
Affiliation(s)
- Shufan Yao
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua Road 818, Ningbo, Zhejiang 315211, P. R. China
| | - Qingqing Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua Road 818, Ningbo, Zhejiang 315211, P. R. China
| | - Qianqian Zhu
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua Road 818, Ningbo, Zhejiang 315211, P. R. China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua Road 818, Ningbo, Zhejiang 315211, P. R. China
| | - Wataru Ueda
- Faculty of Engineering, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
| | - Zhenxin Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua Road 818, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
4
|
Yamane Y, Miyahara MT, Tanaka H. High-Performance Carbon Molecular Sieves for the Separation of Propylene and Propane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17878-17888. [PMID: 35266395 DOI: 10.1021/acsami.1c21305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-performance carbon molecular sieves (CMSs) for the separation of propylene (C3H6) and propane (C3H8) were synthesized in this study by chemical vapor deposition (CVD) of benzene on the pore entrances of activated carbon. The C3H6 and C3H8 separation characteristics of the CMSs were controlled by altering the amount of carbon deposited during CVD, and the resulting characteristic curve featuring the kinetic selectivity of C3H6 over C3H8 as a function of the adsorption rate constant of C3H6 is considered to be the upper bound of the C3H6-C3H8 separation factor for current CMSs because of the presence of previously reported CMS data under this curve. Additionally, CMS models were constructed using grand canonical molecular dynamics (GCMD) simulations mimicking the process of CVD, which revealed that the kinetic selectivity of C3H6 over C3H8 strongly depended on the size of the pore entrances at the level of 0.01 nm, and that strict control of the pore-entrance size was crucial for obtaining high-performance CMSs for C3H6-C3H8 separation. This was essentially achieved by controlling the duration of CVD, which led to the experimental realization of CMSs with a C3H6 selectivity over C3H8 of >2000 and a high uptake rate of C3H6. A design guideline for the development of high-performance CMSs for C3H6-C3H8 separation was proposed based on theoretical calculations performed using idealized carbon structures, which extracted the characteristics of the CMS models obtained from the GCMD simulations.
Collapse
Affiliation(s)
- Yasuyuki Yamane
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
- Innovation & Development Department, Activated Carbon Business Division, Osaka Gas Chemicals Co., Ltd., 5-11-61 Torishima, Konohana, Osaka 554-0051, Japan
| | - Minoru T Miyahara
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Hideki Tanaka
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
5
|
Saha D, Kim MB, Robinson AJ, Babarao R, Thallapally PK. Elucidating the mechanisms of Paraffin-Olefin separations using nanoporous adsorbents: An overview. iScience 2021; 24:103042. [PMID: 34568784 PMCID: PMC8449248 DOI: 10.1016/j.isci.2021.103042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light olefins are the precursors of all modern-day plastics. Olefin is always mixed with paraffins in the time of production, and therefore it needs to be separated from paraffins to produce polymer-grade olefin. The state-of-the-art separation technique, cryogenic distillation, is highly expensive and hazardous. Adsorption could be a novel, sustainable, and inexpensive separation strategy, provided a suitable adsorbent can be designed. There are different types of mechanisms that were harnessed for the separation of olefins by adsorption, and in this review, we have focused our discussion on those mechanisms. These mechanisms include, (a) Affinity-based separation, like pi complexation and hydrogen bonding, (b) Separation based on pore size and shape, like size-exclusion and gate-opening effect, and (c) Non-equilibrium separation, like kinetic separation. In this review, we have elaborated each of the separation strategies from the fundamental level and explained their roles in the separation processes of different types of paraffins and olefins.
Collapse
Affiliation(s)
- Dipendu Saha
- Chemical Engineering Department, Widener University, 1 University Place, Chester, PA 19013, USA
- Corresponding author
| | - Min-Bum Kim
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | - Ravichandar Babarao
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Australia
- CSIRO Manufacturing Flagship, Clayton, VIC, Australia
| | | |
Collapse
|
6
|
Wu Y, Weckhuysen BM. Separation and Purification of Hydrocarbons with Porous Materials. Angew Chem Int Ed Engl 2021; 60:18930-18949. [PMID: 33784433 PMCID: PMC8453698 DOI: 10.1002/anie.202104318] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 11/11/2022]
Abstract
This Minireview focuses on the developments of the adsorptive separation of methane/nitrogen, ethene/ethane, propene/propane mixtures as well as on the separation of C8 aromatics (i.e. xylene isomers) with a wide variety of materials, including carbonaceous materials, zeolites, metal-organic frameworks, and porous organic frameworks. Some recent important developments for these adsorptive separations are also highlighted. The advantages and disadvantages of each material category are discussed and guidelines for the design of improved materials are proposed. Furthermore, challenges and future developments of each material type and separation processes are discussed.
Collapse
Affiliation(s)
- Yaqi Wu
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
7
|
Wu Y, Weckhuysen BM. Separation and Purification of Hydrocarbons with Porous Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yaqi Wu
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
8
|
Yuan Y, Wang Y, Zhang X, Li W, Hao G, Han L, Lu A. Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ya‐Fei Yuan
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Yong‐Sheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Xue‐Liang Zhang
- School of Chemistry and Chemical Engineering State Key Laboratory of Composite Materials Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University 800 Dongchuan Road Shanghai P. R. China
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Wen‐Cui Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Guang‐Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Lu Han
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - An‐Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
9
|
Yuan YF, Wang YS, Zhang XL, Li WC, Hao GP, Han L, Lu AH. Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane. Angew Chem Int Ed Engl 2021; 60:19063-19067. [PMID: 34145709 DOI: 10.1002/anie.202106523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/13/2021] [Indexed: 11/10/2022]
Abstract
Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m2 g-1 and a tri-modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations.
Collapse
Affiliation(s)
- Ya-Fei Yuan
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yong-Sheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xue-Liang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Composite Materials, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, P. R. China.,School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Wen-Cui Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
10
|
Maghsoudi H, Abdi H, Aidani A. Temperature- and Pressure-Dependent Adsorption Equilibria and Diffusivities of Propylene and Propane in Pure-Silica Si-CHA Zeolite. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05451] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hafez Maghsoudi
- Chemical Engineering Faculty and Nanostructure Materials Research Center (NMRC), Sahand University of Technology, P.O. Box 51335/1996, Tabriz 5331817634, Iran
| | - Hamed Abdi
- Chemical Engineering Faculty and Nanostructure Materials Research Center (NMRC), Sahand University of Technology, P.O. Box 51335/1996, Tabriz 5331817634, Iran
| | - Azam Aidani
- Chemical Engineering Faculty and Nanostructure Materials Research Center (NMRC), Sahand University of Technology, P.O. Box 51335/1996, Tabriz 5331817634, Iran
| |
Collapse
|
11
|
Wang Y, Peh SB, Zhao D. Alternatives to Cryogenic Distillation: Advanced Porous Materials in Adsorptive Light Olefin/Paraffin Separations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900058. [PMID: 30993886 DOI: 10.1002/smll.201900058] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/02/2019] [Indexed: 06/09/2023]
Abstract
As primary feedstocks in the petrochemical industry, light olefins such as ethylene and propylene are mainly obtained from steam cracking of naphtha and short chain alkanes (ethane and propane). Due to their similar physical properties, the separations of olefins and paraffins-pivotal processes to meet the olefin purity requirement of downstream processing-are typically performed by highly energy-intensive cryogenic distillation at low temperatures and high pressures. To reduce the energy input and save costs, adsorptive olefin/paraffin separations have been proposed as promising techniques to complement or even replace cryogenic distillation, and growing efforts have been devoted to developing advanced adsorbents to fulfill this challenging task. In this Review, a holistic view of olefin/paraffin separations is first provided by summarizing how different processes have been established to leverage the differences between olefins and paraffins for effective separations. Subsequently, recent advances in the development of porous materials for adsorptive olefin/paraffin separations are highlighted with an emphasis on different separation mechanisms. Last, a perspective on possible directions to push the limit of the research in this field is presented.
Collapse
Affiliation(s)
- Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|