1
|
Cervantes-Diaz KB, Drobek M, Julbe A, Ayral A, Cambedouzou J. Mesoporous SiC-Based Photocatalytic Membranes and Coatings for Water Treatment. MEMBRANES 2023; 13:672. [PMID: 37505038 PMCID: PMC10383672 DOI: 10.3390/membranes13070672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Photocatalytically active silicon carbide (SiC)-based mesoporous layers (pore sizes between 5 and 30 nm) were synthesized from preceramic polymers (polymer-derived ceramic route) on the surface and inside the pores of conventional macroporous α-alumina supports. The hybrid membrane system obtained, coupling the separation and photocatalytical properties of SiC thin films, was characterized by different static and dynamic techniques, including gas and liquid permeation measurements. The photocatalytic activity was evaluated by considering the degradation efficiency of a model organic pollutant (methylene blue, MB) under UV light irradiation in both diffusion and permeation modes using SiC-coated macroporous supports. Specific degradation rates of 1.58 × 10-8 mol s-1 m-2 and 7.5 × 10-9 mol s-1 m-2 were obtained in diffusion and permeation modes, respectively. The performance of the new SiC/α-Al2O3 materials compares favorably to conventional TiO2-based photocatalytic membranes, taking advantage of the attractive physicochemical properties of SiC. The developed synthesis strategy yielded original photocatalytic SiC/α-Al2O3 composites with the possibility to couple the ultrafiltration SiC membrane top-layer with the SiC-functionalized (photocatalytic) macroporous support. Such SiC-based materials and their rational associations on porous supports offer promising potential for the development of efficient photocatalytic membrane reactors and contactors for the continuous treatment of polluted waters.
Collapse
Affiliation(s)
| | - Martin Drobek
- Institut Européen des Membranes, IEM-UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Anne Julbe
- Institut Européen des Membranes, IEM-UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - André Ayral
- Institut Européen des Membranes, IEM-UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Julien Cambedouzou
- Institut Européen des Membranes, IEM-UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
2
|
Ritsema van Eck G, Kiens EM, Veldscholte LB, Brió Pérez M, de Beer S. Vapor Swelling of Polymer Brushes Compared to Nongrafted Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13763-13770. [PMID: 36331903 PMCID: PMC9671043 DOI: 10.1021/acs.langmuir.2c01889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/25/2022] [Indexed: 05/28/2023]
Abstract
Polymer brushes, coatings of polymers covalently end-grafted to a surface, have been proposed as a more stable alternative to traditional physisorbed coatings. However, when such coatings are applied in settings such as vapor sensing and gas separation technologies, their responsiveness to solvent vapors becomes an important consideration. It can be anticipated that the end-anchoring in polymer brushes reduces the translational entropy of the polymers and instead introduces an entropic penalty against stretching when vapor is absorbed. Therefore, swelling can be expected to be diminished in brushes compared to nongrafted films. Here, we study the effect of the anchoring-constraint on vapor sorption in polymer coatings using coarse-grained molecular dynamics simulations as well as humidity-controlled ellipsometry on chemically identical polymer brushes and nongrafted films. We find a qualitative agreement between simulations and experiments, with both indicating that brushes certainly swell less than physisorbed films, although this effect is minor for common grafting densities. Our results imply that polymer brushes indeed hold great potential for the intended applications.
Collapse
|
3
|
Ritsema van Eck G, Chiappisi L, de Beer S. Fundamentals and Applications of Polymer Brushes in Air. ACS APPLIED POLYMER MATERIALS 2022; 4:3062-3087. [PMID: 35601464 PMCID: PMC9112284 DOI: 10.1021/acsapm.1c01615] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 05/22/2023]
Abstract
For several decades, high-density, end-tethered polymers, forming so-called polymer brushes, have inspired scientists to understand their properties and to translate them to applications. While earlier research focused on polymer brushes in liquids, it was recently recognized that these brushes can find application in air as well. In this review, we report on recent progress in unraveling fundamental concepts of brushes in air, such as their vapor-swelling and solvent partitioning. Moreover, we provide an overview of the plethora of applications in air (e.g., in sensing, separations or smart adhesives) where brushes can be key components. To conclude, we provide an outlook by identifying open questions and issues that, when solved, will pave the way for the large scale application of brushes in air.
Collapse
Affiliation(s)
- Guido
C. Ritsema van Eck
- Sustainable
Polymer Chemistry Group, Department of Molecules & Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Leonardo Chiappisi
- Institut
Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules & Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
4
|
Smook LA, Ritsema van Eck GC, de Beer S. Vapor sorption in binary polymer brushes: The effect of the polymer-polymer interface. J Chem Phys 2021; 155:054904. [PMID: 34364330 DOI: 10.1063/5.0057065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polymer brushes attract vapors that are good solvents for polymers. This is useful in sensing and other technologies that rely on concentrating vapors for optimal performance. It was recently shown that vapor sorption can be enhanced further by incorporating two incompatible types of polymers A and B in the brushes: additional vapor adsorbs at the high-energy polymer-polymer interface in these binary brushes. In this article, we present a model that describes this enhanced sorption in binary brushes of immiscible A-B polymers. To do so, we set up a free-energy model to predict the interfacial area between the different polymer phases in binary brushes. This description is combined with Gibbs adsorption isotherms to determine the adsorption at these interfaces. We validate our model with coarse-grained molecular dynamics simulations. Moreover, based on our results, we propose design parameters (A-B chain fraction, grafting density, vapor, and A-B interaction strength) for optimal vapor absorption in coatings composed of binary brushes.
Collapse
Affiliation(s)
- Leon A Smook
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Guido C Ritsema van Eck
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
5
|
Thermal Stability of Ionic Liquids: Current Status and Prospects for Future Development. Processes (Basel) 2021. [DOI: 10.3390/pr9020337] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ionic liquids (ILs) are the safest solvent in various high-temperature applications due to their non-flammable properties. In order to obtain their thermal stability properties, thermogravimetric analysis (TGA) is extensively used to analyze the kinetics of the thermal decomposition process. This review summarizes the different kinetics analysis methods and finds the isoconversional methods are superior to the Arrhenius methods in calculating the activation energy, and two tools—the compensation effect and master plots—are suggested for the calculation of the pre-exponential factor. With both parameters, the maximum operating temperature (MOT) can be calculated to predict the thermal stability in long-term runnings. The collection of thermal stability data of ILs with divergent cations and anions shows the structure of cations such as alkyl side chains, functional groups, and alkyl substituents will affect the thermal stability, but their influence is less than that of anions. To develop ILs with superior thermal stability, dicationic ILs (DILs) are recommended, and typically, [C4(MIM)2][NTf2]2 has a decomposition temperature as high as 468.1 °C. For the convenience of application, thermal stability on the decomposition temperature and thermal decomposition activation energy of 130 ILs are summarized at the end of this manuscript.
Collapse
|
6
|
Smook LA, Ritsema van Eck GC, de Beer S. Friends, Foes, and Favorites: Relative Interactions Determine How Polymer Brushes Absorb Vapors of Binary Solvents. Macromolecules 2020; 53:10898-10906. [PMID: 33380750 PMCID: PMC7759003 DOI: 10.1021/acs.macromol.0c02228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Indexed: 11/30/2022]
Abstract
Polymer brushes can absorb vapors from the surrounding atmosphere, which is relevant for many applications such as in sensing and separation technologies. In this article, we report on the absorption of binary mixtures of solvent vapors (A and B) with a thermodynamic mean-field model and with grand-canonical molecular dynamics simulations. Both methods show that the vapor with the strongest vapor-polymer interaction is favored and absorbs preferentially. In addition, the absorption of one vapor (A) influences the absorption of another (B). If the A-B interaction is stronger than the interaction between vapor B and the polymers, the presence of vapor A in the brush can aid the absorption of B: the vapors absorb collaboratively as friends. In contrast, if the A-polymer interaction is stronger than the B-polymer interaction and the brush has reached its maximum sorption capacity, the presence of A can reduce the absorption of B: the vapors absorb competitively as foes.
Collapse
Affiliation(s)
- Leon A. Smook
- Sustainable Polymer Chemistry, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Guido C. Ritsema van Eck
- Sustainable Polymer Chemistry, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
7
|
|
8
|
Wang C, Guo F, Li H, Xu J, Hu J, Liu H, Wang M. A porous ionic polymer bionic carrier in a mixed matrix membrane for facilitating selective CO2 permeability. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Yan X, Anguille S, Bendahan M, Moulin P. Ionic liquids combined with membrane separation processes: A review. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.103] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Pizzoccaro-Zilamy MA, Piña SM, Rebiere B, Daniel C, Farrusseng D, Drobek M, Silly G, Julbe A, Guerrero G. Controlled grafting of dialkylphosphonate-based ionic liquids on γ-alumina: design of hybrid materials with high potential for CO 2 separation applications. RSC Adv 2019; 9:19882-19894. [PMID: 35514733 PMCID: PMC9065391 DOI: 10.1039/c9ra01265f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/17/2019] [Indexed: 11/22/2022] Open
Abstract
In this work we provide a detailed study on grafting reactions of various dialkylphosphonate-based ILs. Special attention has been devoted to a comprehensive investigation on how the nature of the anion and the organic spacer composition (hydrophilic or hydrophobic groups) could impact the grafting densities and bonding modes of phosphonate-based ILs anchored to γ-alumina (γ-Al2O3) powders. For the first time, the bonding of phosphonate-based ILs with only surface hexacoordinated aluminum nuclei was established using both solid-state 31P–27Al D-HMQC and 31P NMR experiments. It has been demonstrated that the grafting of dialkylphosphonate-based ILs is competing with a hydrolysis and/or precipitation process which could be attractively hindered by changing the anion nature: bis(trifluoromethane)sulfonylimide anion instead of bromide. In additon, independently of the chosen spacer, similar reaction conditions led to equivalent grafting densities with different bonding mode configurations. The CO2 physisorption analysis on both pure ILs and grafted ILs on alumina powders confirmed that the initial sorption properties of ILs do not change upon grafting, thus confirming the attractive potential of as-grafted ILs for the preparation of hybrid materials in a form of selective adsorbers or membranes for CO2 separation applications. Grafting of diethylphophonate-based ILs onto γ-Al2O3 powder in solvothermal condition was achieved on mesoporous γ-alumina powder and membrane (A = organic spacer).![]()
Collapse
Affiliation(s)
- M A Pizzoccaro-Zilamy
- Institut Européen des Membranes, UMR5635, CNRS-UM-ENSCM, Université de Montpellier (CC047) Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - S Muñoz Piña
- Institut Européen des Membranes, UMR5635, CNRS-UM-ENSCM, Université de Montpellier (CC047) Place Eugène Bataillon 34095 Montpellier Cedex 5 France.,Institut Charles Gerhardt, UMR5253, CNRS-UM-ENSCM, Université de Montpellier Place Eugène Bataillon 34095 Montpellier Cedex 5 France +33-467-144-223
| | - B Rebiere
- Institut Charles Gerhardt, UMR5253, CNRS-UM-ENSCM, Université de Montpellier Place Eugène Bataillon 34095 Montpellier Cedex 5 France +33-467-144-223
| | - C Daniel
- IRCELYON, UMR5256, CNRS-Université Lyon 1 2 Avenue Albert Einstein 69626 Villeurbanne Cedex France
| | - D Farrusseng
- IRCELYON, UMR5256, CNRS-Université Lyon 1 2 Avenue Albert Einstein 69626 Villeurbanne Cedex France
| | - M Drobek
- Institut Européen des Membranes, UMR5635, CNRS-UM-ENSCM, Université de Montpellier (CC047) Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - G Silly
- Institut Charles Gerhardt, UMR5253, CNRS-UM-ENSCM, Université de Montpellier Place Eugène Bataillon 34095 Montpellier Cedex 5 France +33-467-144-223
| | - A Julbe
- Institut Européen des Membranes, UMR5635, CNRS-UM-ENSCM, Université de Montpellier (CC047) Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - G Guerrero
- Institut Charles Gerhardt, UMR5253, CNRS-UM-ENSCM, Université de Montpellier Place Eugène Bataillon 34095 Montpellier Cedex 5 France +33-467-144-223
| |
Collapse
|