1
|
Gong W, Wang ML, Liu Y, Yu DG, Bligh SWA. Shell Distribution of Vitamin K3 within Reinforced Electrospun Nanofibers for Improved Photo-Antibacterial Performance. Int J Mol Sci 2024; 25:9556. [PMID: 39273503 PMCID: PMC11394794 DOI: 10.3390/ijms25179556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Personal protective equipment (PPE) has attracted more attention since the outbreak of the epidemic in 2019. Advanced nano techniques, such as electrospinning, can provide new routes for developing novel PPE. However, electrospun antibacterial PPE is not easily obtained. Fibers loaded with photosensitizers prepared using single-fluid electrospinning have a relatively low utilization rate due to the influence of embedding and their inadequate mechanical properties. For this study, monolithic nanofibers and core-shell nanofibers were prepared and compared. Monolithic F1 fibers comprising polyethylene oxide (PEO), poly(vinyl alcohol-co-ethylene) (PVA-co-PE), and the photo-antibacterial agent vitamin K3 (VK3) were created using a single-fluid blending process. Core-shell F2 nanofibers were prepared using coaxial electrospinning, in which the extensible material PEO was set as the core section, and a composite consisting of PEO, PVA-co-PE, and VK3 was set as the shell section. Both F1 and F2 fibers with the designed structural properties had an average diameter of approximately 1.0 μm, as determined using scanning electron microscopy and transmission electron microscopy. VK3 was amorphously dispersed within the polymeric matrices of F1 and F2 fibers in a compatible manner, as revealed using X-ray diffraction and Fourier transform infrared spectroscopy. Monolithic F1 fibers had a higher tensile strength of 2.917 ± 0.091 MPa, whereas the core-shell F2 fibers had a longer elongation with a break rate of 194.567 ± 0.091%. Photoreaction tests showed that, with their adjustment, core-shell F2 nanofibers could produce 0.222 μmol/L ·OH upon illumination. F2 fibers had slightly better antibacterial performance than F1 fibers, with inhibition zones of 1.361 ± 0.012 cm and 1.296 ± 0.022 cm for E. coli and S. aureus, respectively, but with less VK3. The intentional tailoring of the components and compositions of the core-shell nanostructures can improve the process-structure-performance relationship of electrospun nanofibers for potential sunlight-activated antibacterial PPE.
Collapse
Affiliation(s)
- Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Meng-Long Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
2
|
Lin X, Sun W, Lin M, Chen T, Duan K, Lin H, Zhang C, Qi H. Bicomponent core/sheath melt-blown fibers for air filtration with ultra-low resistance. RSC Adv 2024; 14:14100-14113. [PMID: 38686297 PMCID: PMC11056944 DOI: 10.1039/d4ra02174f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
With the escalating air pollution and frequent outbreaks of airborne diseases, there is a growing demand for personal protective filtration media. Melt-blown nonwovens have proven to be highly effective in capturing tiny particles, but their tightly packed fiber assemblages are more resistant to airflow and less comfortable to breathe. Here, we present a one-step melt-blown spinning process for the production of bicomponent core/sheath (BCS) crimped fibers and their application in high-efficiency, low-resistance air filtration. Fiber curl is caused by unbalanced internal stresses resulting from differences in the structure components, resulting in uneven shrinkage inside and outside the fibers. The resulting CM@S-2 filtration media features a uniform fiber curl and a porous fiber mesh structure, which reduces air filtration resistance. Under the same filtration conditions, the filtration efficiency of CM@S-2 (96.58% vs. 95.58%), filtration resistance (56.1 Pa vs. 108.0 Pa), quality factor (0.061 Pa-1vs. 0.029 Pa-1), and dust holding capacity (10.60 g m-2vs. 9.10 g m-2) were comparable to those of the single-component polypropylene filters. The filtration efficiency of the CM@S-2 remained above 94.0% after 30 days of indoor storage. Computational Fluid Dynamics (CFD) simulation demonstrated that crimped fibers effectively reduce pressure surges on the filter media caused by fiber accumulation. In comparative tests with commercial masks, the CM@S-2 cartridge masks demonstrated superior air permeability compared to commercial masks under similar filtration conditions. In conclusion, the bicomponent core/sheath melt-blown fibers significantly reduce air resistance and show excellent potential for application in protective masks.
Collapse
Affiliation(s)
- Xiaofang Lin
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian China
- College of Textile and Clothing Engineering, Soochow University Jiangsu China
| | - Wenbo Sun
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian China
| | - Minggang Lin
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian China
| | - Ting Chen
- College of Textile and Clothing Engineering, Soochow University Jiangsu China
| | - Kangming Duan
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian China
| | - Huiting Lin
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian China
- College of Textile and Apparel, Quanzhou Normal University Fujian China
| | - Chuyang Zhang
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian China
| | - Huan Qi
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian China
- College of Textile and Apparel, Quanzhou Normal University Fujian China
| |
Collapse
|
3
|
Zhang X, Liu J, Liu X, Liu C, Chen Q. HEPA filters for airliner cabins: State of the art and future development. INDOOR AIR 2022; 32:e13103. [PMID: 36168223 DOI: 10.1111/ina.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
The airliner cabin environment is very important to the health of passengers and crew members, and the use of high-efficiency particulate air (HEPA) filters for recirculated air in the environmental control systems (ECS) is essential for the removal of airborne particles such as SARS CoV-2 aerosols. A HEPA filter should be high efficiency, low-pressure drop, high dust-holding capacity (DHC), lightweight, and strong for use in aircraft. We conducted an experimental study on 23 HEPA filters with glass fiber media that are used in different commercial airliner models. The tested filters had a median filtration efficiency of >99.97% for particles with a diameter of 0.3-0.5 μm, a pressure drop of 134-412 Pa at rated airflow rate, and a DHC of 32.2-37.0 g/m2 . The use of nanofiber media instead of glass fiber media can reduce the pressure drop by 66.4%-94.3% and significantly increase the quality factor by analysis of literature data. The disadvantages of poor fire resistance and small DHC can be overcome by the use of flame-retardant polymers and fiber structural design. As a new lightweight and environmentally friendly filter material, nanofiber media could be used as air filters in ECS in the future.
Collapse
Affiliation(s)
- Xin Zhang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Junjie Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xuan Liu
- China Railway Design Corporation, Tianjin, China
| | - Chaojun Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Zhejiang Goldensea Environment Technology Co. Ltd., Zhejiang, China
| | - Qingyan Chen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
4
|
Lin S, Fu X, Luo M, Wang C, Zhong WH. Interface-tailored forces fluffing protein fiber membranes for high-performance filtration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Preparation and modification of an embossed nanofibrous materials for robust filtration performance of PM0.2 removal. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Cai RR, Li SZ, Zhang LZ, Lei Y. Fabrication and performance of a stable micro/nano composite electret filter for effective PM 2.5 capture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138297. [PMID: 32304960 DOI: 10.1016/j.scitotenv.2020.138297] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Airborne particulate matter (PM) pollution has raised serious concerns over both the global climate and public health. Therefore, there is an urgent need for air filters of high-efficiency and energy-saving. Pore structure optimization and electret enhancement are feasible means to improve their filtration performance. Herein, a novel sandwich-structured electret composite filter with a low pressure drop and robust filtration stability was successfully designed and fabricated. The composite filter was composed of fluffy PS microfibers with large electric resistivity and high porosity, and PAN nanofibers with high polarity and small pore size. Benefiting from the fluffy structure constructed by electrospinning at the right humidity, the tortuous pore channels created by the appropriate mixing of microfibers and nanofibers, and the abundant static charges generated by the hybrid of polar and nonpolar polymer materials, the PS/PAN/PS composite filter possessed a high filtration efficiency of 99.96% for particles of 0.30 μm, a low pressure drop of 54 Pa and a satisfactory quality factor value of 0.1449 Pa-1 at an airflow velocity of 5.3 cm/s. In particular, the composite filter exhibited better electret stability and PM2.5 loading performance than the commercial ones, which guarantees its long-term storage and usage.
Collapse
Affiliation(s)
- Rong-Rong Cai
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Shu-Zheng Li
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Li-Zhi Zhang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, PR China.
| | - Yang Lei
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
7
|
Wang X, Xiang H, Song C, Zhu D, Sui J, Liu Q, Long Y. Highly efficient transparent air filter prepared by collecting-electrode-free bipolar electrospinning apparatus. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121535. [PMID: 31740311 DOI: 10.1016/j.jhazmat.2019.121535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Electrospinning technology has been used for a long time. A jet from a needle was formed by applying high voltage, and then the nanofibers are deposited onto a collecting electrode (usually metal) and the excess charge is conducted away to complete the electrospinning. Alternatively, it is also possible to prevent charge accumulation from hindering the progress of electrospinning by means of charge neutralization. A bipolar electrospinning technique (B-EEM) was developed to induce jets with different charges through a set of high-voltage power supplies of opposite polarity, and the two jets neutralize each other on the insulating mesh, thus completing the electrospinning process. There is no need for a collecting electrode to complete the electrospinning process. We have found that the filters produced by the new technology have better filtration efficiency while maintaining the same transparency in relative to the original technology, and this optimization is due to the distribution modification of the nanofibers on the mesh.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Hongfei Xiang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China; Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Song
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Dongyang Zhu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Jinxia Sui
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Qi Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
8
|
Wang X, Cheng P, Liu N, Wan Y, Guo Q, Cheng Q, Liu K, Lu Z, Li M, Wang D. Highly efficient nanofibrous sterile membrane with anti-BSA/RNA-fouling surface via plasma-assisted carboxylation process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|