1
|
Zeng Z, Guan MJ, Chen H, Xu X, Zou MJ, Zhang MC, Du Y, Li L. Capture-bonding Super Assembly of Nanoscale Dispersed Bimetal on Uniform CeO 2 Nanorod for the Toluene Oxidation. Chem Asian J 2023; 18:e202200947. [PMID: 36377353 DOI: 10.1002/asia.202200947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Elimination of VOCs by catalytic oxidation is an important technology. Here, a general synergistic capture-bonding superassembly strategy was proposed to obtain the nanoscale dispersed 5.8% PtFe3 -CeO2 catalyst, which showed a high toluene oxidation activity (T100 =226 °C), excellent catalytic stability (125 h, >99.5%) and a good water resistance ability (70 h, >99.5%). Through the detailed XPS analysis, oxygen cycle experiment, hydrogen reduction experiment, and in-situ DRIFT experiment, we could deduce that PtFe3 -CeO2 had two reaction pathways. The surface adsorbed oxygen resulting from PtFe3 nanoparticles played a dominant role, due to the fast cycling between the surface adsorbed oxygen and oxygen vacancy. In contrast, the lattice oxygen resulting from CeO2 nanorods played an important role due to the relationship between the toluene oxidation activity and the metal-oxygen bonding energy. Furthermore, DFT simulation verified Pt sites were the dominant reaction active sites during this reaction.
Collapse
Affiliation(s)
- Zheng Zeng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Ma Juan Guan
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Hongyu Chen
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Xiang Xu
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Ma Jianwu Zou
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Ma Chongjie Zhang
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Yankun Du
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Liqing Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| |
Collapse
|
2
|
Li J, Li Z, Zheng Z, Zhang X, Zhang H, Wei H, Chu H. Tuning the Product Selectivity toward the High Yield of Glyceric Acid in Pt‐CeO2/CNT Electrocatalyzed Oxidation of Glycerol. ChemCatChem 2022. [DOI: 10.1002/cctc.202200509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiefei Li
- Inner Mongolia University College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules CHINA
| | - Zhenyu Li
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy CHINA
| | | | - Xueqiong Zhang
- Inner Mongolia University College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules CHINA
| | - Hao Zhang
- Inner Mongolia University College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules CHINA
| | - Hang Wei
- Inner Mongolia University College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules CHINA
| | - Haibin Chu
- Inner Mongolia University College of Chemistry and Chemical Engineering Daxue East Road 235 010021 Hohhot CHINA
| |
Collapse
|
3
|
Shi Y, Zhang D, Huang H, Miao H, Wu X, Zhao H, Zhan T, Chen X, Lai J, Wang L. Mixture Phases Engineering of PtFe Nanofoams for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106947. [PMID: 35001511 DOI: 10.1002/smll.202106947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Phase engineering is a promising but challenging approach to construct PtFe-based catalysts with efficient hydrogen evolution reaction (HER) performance. Herein, the authors successfully synthesize PtFe nanofoams with face center cubic (fcc) phase, with simple cubic crystalline (scc) phase and with the mixture phases of fcc and scc phases (PtFe-mix) by hydrogen-assisted calcination for the first time. By benchmarking the HER activity, PtFe-mix exhibits excellent activity in 1.0 m KOH, requiring an overpotential of 28 mV to achieve 10 mA cm-2 , which is better than the commercial Pt/C (34 mV). PtFe-mix also possesses remarkable stability up to 24 h. Density functional theory calculations further verify that PtFe-mix shows a more suitable d-band center and lower energy barrier for the initial water dissociation, facilitating the HER process. This work provides a meaningful strategy to design PtFe-based catalysts with efficient activity for hydrogen evolution.
Collapse
Affiliation(s)
- Yue Shi
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dan Zhang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hao Huang
- School of Sustainable Energy Materials and Science, Jinhua Advanced Research Institute, Jinhua, 321000, P. R. China
| | - Hongfu Miao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xueke Wu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Huan Zhao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Tianrong Zhan
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xilei Chen
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
4
|
Shen J, Tang R, Huang J, Wu Y, Chen C, Zhou Q, Huang Y, Motkuri RK, Jin X, Cao H. Strain engineered gas-consumption electroreduction reactions: Fundamentals and perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Liu M, Jin X, Zhang G, Xia Q, Lai L, Wang J, Zhang W, Sun Y, Ding J, Yan H, Yang C. Bimetallic AuPt/TiO2 Catalysts for Direct Oxidation of Glucose and Gluconic Acid to Tartaric Acid in the Presence of Molecular O2. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Guangyu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Qi Xia
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Linyi Lai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Wenxiang Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Yu Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Jie Ding
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Hao Yan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| |
Collapse
|