1
|
Yuan Z, Zhao X, Ye L. Skinless Polyphenylene Sulfide Foam with Enhanced Thermal Insulation Properties Fabricated by Constructing Aligned Gas Barrier Layers for Surface-Constrained sc-CO 2 Foaming. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37329323 DOI: 10.1021/acsami.3c05454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A solid skin layer inevitably forms on the foam surface for supercritical carbon dioxide (sc-CO2) foaming technology, leading to deterioration of some inherent properties of polymeric foams. In this work, skinless polyphenylene sulfide (PPS) foam was fabricated with a surface-constrained sc-CO2 foaming method by innovatively constructing aligned epoxy resin/ferromagnetic graphene oxide composites (EP/GO@Fe3O4) as a CO2 barrier layer under a magnetic field. Introduction of GO@Fe3O4 and its ordered alignment led to an obvious decrease in the CO2 permeability coefficient of the barrier layer, a significant increase of the CO2 concentration in the PPS matrix, and a decrease of desorption diffusivity in the depressurization stage, suggesting that the composite layers effectively inhibited the escape of CO2 dissolved in the matrix. Meanwhile, the strong interfacial interaction between the composite layer and the PPS matrix remarkably enhanced the heterogeneous nucleation of cells at the interface, resulting in elimination of the solid skin layer and formation of an obvious cellular structure on the foam surface. Moreover, by the alignment of GO@Fe3O4 in EP, the CO2 permeability coefficient of the barrier layer became much lower, and the cell density on the foam surface further increased with decreasing cell size, which was even higher than that of the cross section of foam, attributed to stronger heterogeneous nucleation at the interface than the homogeneous nucleation in the core region of the sample. As a result, the thermal conductivity of the skinless PPS foam reached as low as 0.0365 W/m·k, decreasing by 49.5% compared with that of regular PPS foam, showing a remarkable improvement in the thermal insulation properties of PPS foam. This work provided a novel and effective method for fabricating skinless PPS foam with enhanced thermal insulation properties.
Collapse
Affiliation(s)
- Zun Yuan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Xu B, Han F, Pei X, Liu X, Zhang J, Cheng J, Zhao J. Thermoplastic polyurethane with good mechanical and processing performances via blocking and deblocking of isocyanates. J Appl Polym Sci 2021. [DOI: 10.1002/app.51315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bowen Xu
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Feilong Han
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Xuqiang Pei
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Xin Liu
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Junying Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Jue Cheng
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| | - Jingbo Zhao
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Beijing China
| |
Collapse
|
3
|
Larraza I, Vadillo J, Calvo-Correas T, Tejado A, Olza S, Peña-Rodríguez C, Arbelaiz A, Eceiza A. Cellulose and Graphene Based Polyurethane Nanocomposites for FDM 3D Printing: Filament Properties and Printability. Polymers (Basel) 2021; 13:839. [PMID: 33803415 PMCID: PMC7967188 DOI: 10.3390/polym13050839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/25/2023] Open
Abstract
3D printing has exponentially grown in popularity due to the personalization of each printed part it offers, making it extremely beneficial for the very demanding biomedical industry. This technique has been extensively developed and optimized and the advances that now reside in the development of new materials suitable for 3D printing, which may open the door to new applications. Fused deposition modeling (FDM) is the most commonly used 3D printing technique. However, filaments suitable for FDM must meet certain criteria for a successful printing process and thus the optimization of their properties in often necessary. The aim of this work was to prepare a flexible and printable polyurethane filament parting from a biocompatible waterborne polyurethane, which shows potential for biomedical applications. In order to improve filament properties and printability, cellulose nanofibers and graphene were employed to prepare polyurethane based nanocomposites. Prepared nanocomposite filaments showed altered properties which directly impacted their printability. Graphene containing nanocomposites presented sound enough thermal and mechanical properties for a good printing process. Moreover, these filaments were employed in FDM to obtained 3D printed parts, which showed good shape fidelity. Properties exhibited by polyurethane and graphene filaments show potential to be used in biomedical applications.
Collapse
Affiliation(s)
- Izaskun Larraza
- Materials + Technologies’ Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, 20018 Donostia-San Sebastian, Spain; (I.L.); (J.V.); (T.C.-C.); (C.P.-R.)
| | - Julen Vadillo
- Materials + Technologies’ Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, 20018 Donostia-San Sebastian, Spain; (I.L.); (J.V.); (T.C.-C.); (C.P.-R.)
- IPREM, UMR 5254, E2S UPPA, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc 2, Avenue du Président Pierre Angot, 64000 Pau, France;
| | - Tamara Calvo-Correas
- Materials + Technologies’ Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, 20018 Donostia-San Sebastian, Spain; (I.L.); (J.V.); (T.C.-C.); (C.P.-R.)
| | - Alvaro Tejado
- TECNALIA, Basque Research and Technology Alliance (BRTA), Area Anardi 5, 20730 Azpeitia, Spain;
| | - Sheila Olza
- IPREM, UMR 5254, E2S UPPA, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc 2, Avenue du Président Pierre Angot, 64000 Pau, France;
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology, University of the Basque Country, B Sarriena s/n, 48940 Leioa, Spain
| | - Cristina Peña-Rodríguez
- Materials + Technologies’ Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, 20018 Donostia-San Sebastian, Spain; (I.L.); (J.V.); (T.C.-C.); (C.P.-R.)
| | - Aitor Arbelaiz
- Materials + Technologies’ Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, 20018 Donostia-San Sebastian, Spain; (I.L.); (J.V.); (T.C.-C.); (C.P.-R.)
| | - Arantxa Eceiza
- Materials + Technologies’ Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, 20018 Donostia-San Sebastian, Spain; (I.L.); (J.V.); (T.C.-C.); (C.P.-R.)
| |
Collapse
|
4
|
Xiong W, Liu H, Tian H, Wu J, Xiang A, Wang C, Ma S, Wu Q. Mechanical and flame‐resistance properties of polyurethane‐imide foams with different‐sized expandable graphite. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weiwen Xiong
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Materials and Mechanical EngineeringBeijing Technology and Business University Beijing China
| | - Hongtao Liu
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Materials and Mechanical EngineeringBeijing Technology and Business University Beijing China
| | - Huafeng Tian
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Materials and Mechanical EngineeringBeijing Technology and Business University Beijing China
| | - Jiali Wu
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Materials and Mechanical EngineeringBeijing Technology and Business University Beijing China
| | - Aimin Xiang
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Materials and Mechanical EngineeringBeijing Technology and Business University Beijing China
| | - Chaoyang Wang
- Key Laboratory of Polymer Processing Engineering, South China University of TechnologyMinistry of Education Guangzhou China
| | - Songbai Ma
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Materials and Mechanical EngineeringBeijing Technology and Business University Beijing China
| | - Qiangxian Wu
- Green Polymer Laboratory, College of ChemistryCentral China Normal University Wuhan China
| |
Collapse
|
5
|
Ma R, Zhao T, Pu H, Sun M, Cui Y, Xie X. Synthesis of Interpenetrating Polymer Networks Based on Triisocyanate-Terminated and Modified Poly(urethane-imide) with Superior Mechanical Properties. ACS OMEGA 2020; 5:6911-6918. [PMID: 32258927 PMCID: PMC7114687 DOI: 10.1021/acsomega.0c00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Interpenetrating polymer networks (IPNs) based on triisocyanate-terminated poly(urethane-imide)s (PUIs) were prepared by in situ interpenetrating reactions between modified polyurethane (PU) with different ratios of polyimide (PI). The effects of PU, which was made from hydroxyl-terminated polybutadiene modified with triisocyanate, and the amounts of PI on the mechanical properties, thermal properties, and crystalline character of the IPNs were discussed. Triisocyanate-terminated PUI showed that the highest tensile strength was 38 times that of the diisocyanate-terminated materials. Supramolecular cross-linking from an additional hydrogen-bonding network of modified PU and the degree of interpenetration with a regular imide structure of PI were introduced, which accounted for the remarkable improvement in mechanical properties of IPNs. Preferable thermal stability and glass transition temperature for the hard segment of IPNs were rewarded with increasing PI content. X-ray diffraction revealed vigorous segmental mixing between the soft and hard segments of modified PUI. Scanning electron micrographs showed the "fibrous assembly" morphology and short-range-ordered structure of modified PUI.
Collapse
|
6
|
Chen Y, Wu T, Xing G, Kou Y, Li B, Wang X, Gao M, Chen L, Wang Y, Yang J, Liu Y, Zhang Y, Wang D. Fundamental Formation of Three-Dimensional Fe3O4 Microcrystals and Practical Application in Anchoring Au as Recoverable Catalyst for Effective Reduction of 4-Nitrophenol. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02777] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yue Chen
- College of Physics, Jilin Normal University, Siping 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Tong Wu
- College of Physics, Jilin Normal University, Siping 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Guoliang Xing
- Jilin Special Equipment Inspection and Research Institute, Jilin 132013, China
| | - Yichuan Kou
- College of Physics, Jilin Normal University, Siping 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Boxun Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Xinying Wang
- School of Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Ming Gao
- College of Physics, Jilin Normal University, Siping 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Lei Chen
- College of Physics, Jilin Normal University, Siping 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yaxin Wang
- College of Physics, Jilin Normal University, Siping 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Jinghai Yang
- College of Physics, Jilin Normal University, Siping 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- College of Physics, Jilin Normal University, Siping 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yongjun Zhang
- College of Physics, Jilin Normal University, Siping 136000, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Dandan Wang
- QRA-PFA-Chemical FA, GLOBALFOUNDRIES (Singapore) Pte. Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406, Singapore
| |
Collapse
|