1
|
G Valverde M, Stampa Zamorano C, Kožinec D, Benito Zarza L, van Genderen AM, Janssen R, Castilho M, Hrynevich A, Vermonden T, Malda J, de Ruijter M, Masereeuw R, Mihăilă SM. Thermoforming for Small Feature Replication in Melt Electrowritten Membranes to Model Kidney Proximal Tubule. Adv Healthc Mater 2025; 14:e2401800. [PMID: 39511873 DOI: 10.1002/adhm.202401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/18/2024] [Indexed: 11/15/2024]
Abstract
A novel approach merging melt electrowriting (MEW) with matched die thermoforming to achieve scaffolds with micron-sized curvatures (200 - 800 µm versus 1000 µm of mandrel printing) for in vitro modeling of the kidney proximal tubule (PT) is proposed. Recent advances in this field emphasize the relevance of accurately replicating the intricate tissue microenvironment, particularly the curvature of the nephrons' tubular segments. While MEW offers promising capabilities for fabricating highly and porous precise 3D structures mimicking the PT, challenges persist in approximating the diameter of tubular scaffolds to match the actual PT. The thermoformed MEW membranes retain the initial MEW printing design parameters (rhombus geometry, porosity > 45%) while accurately following the imprinted curvature (ratios between 0.67-0.95). PT epithelial cells cultured on these membranes demonstrate the ability to fill in the large pores of the membrane by secreting their own collagen IV-rich extracellular matrix and form an organized, functional, and tight monolayer expressing characteristic PT markers. Besides approximating PT architecture, this setup maximizes the usable surface area for cell culture and molecular readouts. By closely mimicking the structural intricacies of native tissue architecture, this approach enhances the biomimetic fidelity of engineered scaffolds, offering potential applications beyond kidney tissue engineering.
Collapse
Affiliation(s)
- Marta G Valverde
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Claudia Stampa Zamorano
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Dora Kožinec
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Laura Benito Zarza
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Anne Metje van Genderen
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Robine Janssen
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Miguel Castilho
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, 5612, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, Eindhoven, 513, The Netherlands
| | - Andrei Hrynevich
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 100, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Tina Vermonden
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, CG 3584, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 100, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Mylene de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 100, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Silvia M Mihăilă
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| |
Collapse
|
2
|
Cheng X, Bae J. Recent Advancements in Fabrication, Separation, and Purification of Hierarchically Porous Polymer Membranes and Their Applications in Next-Generation Electrochemical Energy Storage Devices. Polymers (Basel) 2024; 16:3269. [PMID: 39684015 DOI: 10.3390/polym16233269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, hierarchically porous polymer membranes (HPPMs) have emerged as promising materials for a wide range of applications, including filtration, separation, and energy storage. These membranes are distinguished by their multiscale porous structures, comprising macro-, meso-, and micropores. The multiscale structure enables optimizing the fluid dynamics and maximizing the surface areas, thereby improving the membrane performance. Advances in fabrication techniques such as electrospinning, phase separation, and templating have contributed to achieving precise control over pore size and distribution, enabling the creation of membranes with properties tailored to specific uses. In filtration systems, these membranes offer high selectivity and permeability, making them highly effective for the removal of contaminants in environmental and industrial processes. In electrochemical energy storage systems, the porous membrane architecture enhances ion transport and charge storage capabilities, leading to improved performance in batteries and supercapacitors. This review highlights the recent advances in the preparation methods for hierarchically porous structures and their progress in electrochemical energy storage applications. It offers valuable insights and references for future research in this field.
Collapse
Affiliation(s)
- Xiong Cheng
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Joonho Bae
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Oh DK, Lee T, Ko B, Badloe T, Ok JG, Rho J. Nanoimprint lithography for high-throughput fabrication of metasurfaces. FRONTIERS OF OPTOELECTRONICS 2021; 14:229-251. [PMID: 36637666 PMCID: PMC9743954 DOI: 10.1007/s12200-021-1121-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
Metasurfaces are composed of periodic sub-wavelength nanostructures and exhibit optical properties that are not found in nature. They have been widely investigated for optical applications such as holograms, wavefront shaping, and structural color printing, however, electron-beam lithography is not suitable to produce large-area metasurfaces because of the high fabrication cost and low productivity. Although alternative optical technologies, such as holographic lithography and plasmonic lithography, can overcome these drawbacks, such methods are still constrained by the optical diffraction limit. To break through this fundamental problem, mechanical nanopatterning processes have been actively studied in many fields, with nanoimprint lithography (NIL) coming to the forefront. Since NIL replicates the nanopattern of the mold regardless of the diffraction limit, NIL can achieve sufficiently high productivity and patterning resolution, giving rise to an explosive development in the fabrication of metasurfaces. In this review, we focus on various NIL technologies for the manufacturing of metasurfaces. First, we briefly describe conventional NIL and then present various NIL methods for the scalable fabrication of metasurfaces. We also discuss recent applications of NIL in the realization of metasurfaces. Finally, we conclude with an outlook on each method and suggest perspectives for future research on the high-throughput fabrication of active metasurfaces.
Collapse
Affiliation(s)
- Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taejun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology (SEOULTECH), Seoul, 01811, Republic of Korea.
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
4
|
Ong SK, Birgersson E, Low HY. Tuning Pressure Drop in Isoporous Membranes: Design with Fabrication Variability. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shi Ke Ong
- Engineering Product Development Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Erik Birgersson
- Department of Mechanical Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117574 Singapore
| | - Hong Yee Low
- Engineering Product Development Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
5
|
Sun M, Han K, Hu R, Liu D, Fu W, Liu W. Advances in Micro/Nanoporous Membranes for Biomedical Engineering. Adv Healthc Mater 2021; 10:e2001545. [PMID: 33511718 DOI: 10.1002/adhm.202001545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Porous membrane materials at the micro/nanoscale have exhibited practical and potential value for extensive biological and medical applications associated with filtration and isolation, cell separation and sorting, micro-arrangement, in-vitro tissue reconstruction, high-throughput manipulation and analysis, and real-time sensing. Herein, an overview of technological development of micro/nanoporous membranes (M/N-PMs) is provided. Various membrane types and the progress documented in membrane fabrication techniques, including the electrochemical-etching, laser-based technology, microcontact printing, electron beam lithography, imprinting, capillary force lithography, spin coating, and microfluidic molding are described. Their key features, achievements, and limitations associated with micro/nanoporous membrane (M/N-PM) preparation are discussed. The recently popularized applications of M/N-PMs in biomedical engineering involving the separation of cells and biomolecules, bioparticle operations, biomimicking, micropatterning, bioassay, and biosensing are explored too. Finally, the challenges that need to be overcome for M/N-PM fabrication and future applications are highlighted.
Collapse
Affiliation(s)
- Meilin Sun
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Kai Han
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Rui Hu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Dan Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenzhu Fu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenming Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| |
Collapse
|
6
|
Mireles M, Soule CW, Dehghani M, Gaborski TR. Use of Nanosphere Self-Assembly to Pattern Nanoporous Membranes for the Study of Extracellular Vesicles. NANOSCALE ADVANCES 2020; 2:4427-4436. [PMID: 33693309 PMCID: PMC7943038 DOI: 10.1039/d0na00142b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/08/2020] [Indexed: 06/12/2023]
Abstract
Nanoscale biocomponents naturally released by cells, such as extracellular vesicles (EVs), have recently gained interest due to their therapeutic and diagnostic potential. Membrane based isolation and co-culture systems have been utilized in an effort to study EVs and their effects. Nevertheless, improved platforms for the study of small EVs are still needed. Suitable membranes, for isolation and co-culture systems, require pore sizes to reach into the nanoscale. These pore sizes cannot be achieved through traditional lithographic techniques and conventional thick nanoporous membranes commonly exhibit low permeability. Here we utilized nanospheres, similar in size and shape to the targeted small EVs, as patterning features for the fabrication of freestanding SiN membranes (120 nm thick) released in minutes through a sacrificial ZnO layer. We evaluated the feasibility of separating subpopulation of EVs based on size using these membranes. The membrane used here showed an effective size cut-off of 300 nm with the majority of the EVs ≤200 nm. This work provides a convenient platform with great potential for studying subpopulations of EVs.
Collapse
Affiliation(s)
- Marcela Mireles
- Department of Biomedical Engineering, Rochester Institute of TechnologyRochesterNYUSA
- Department of Biomedical Engineering, University of RochesterRochesterNYUSA
| | - Cody W. Soule
- Department of Biomedical Engineering, Rochester Institute of TechnologyRochesterNYUSA
| | - Mehdi Dehghani
- Department of Biomedical Engineering, Rochester Institute of TechnologyRochesterNYUSA
| | - Thomas R. Gaborski
- Department of Biomedical Engineering, Rochester Institute of TechnologyRochesterNYUSA
- Department of Biomedical Engineering, University of RochesterRochesterNYUSA
| |
Collapse
|
7
|
Tayebi M, O'Rorke R, Wong HC, Low HY, Han J, Collins DJ, Ai Y. Massively Multiplexed Submicron Particle Patterning in Acoustically Driven Oscillating Nanocavities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000462. [PMID: 32196142 DOI: 10.1002/smll.202000462] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Nanoacoustic fields are a promising method for particle actuation at the nanoscale, though THz frequencies are typically required to create nanoscale wavelengths. In this work, the generation of robust nanoscale force gradients is demonstrated using MHz driving frequencies via acoustic-structure interactions. A structured elastic layer at the interface between a microfluidic channel and a traveling surface acoustic wave (SAW) device results in submicron acoustic traps, each of which can trap individual submicron particles. The acoustically driven deformation of nanocavities gives rise to time-averaged acoustic fields which direct suspended particles toward, and trap them within, the nanocavities. The use of SAWs permits massively multiplexed particle manipulation with deterministic patterning at the single-particle level. In this work, 300 nm diameter particles are acoustically trapped in 500 nm diameter cavities using traveling SAWs with wavelengths in the range of 20-80 µm with one particle per cavity. On-demand generation of nanoscale acoustic force gradients has wide applications in nanoparticle manipulation, including bioparticle enrichment and enhanced catalytic reactions for industrial applications.
Collapse
Affiliation(s)
- Mahnoush Tayebi
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Richard O'Rorke
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Him Cheng Wong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Hong Yee Low
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Jongyoon Han
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| |
Collapse
|