1
|
Ma L, Liu H, He D. Recent Progress in Catalyst Development of the Hydrogenolysis of Biomass-Based Glycerol into Propanediols-A Review. Bioengineering (Basel) 2023; 10:1264. [PMID: 38002388 PMCID: PMC10669600 DOI: 10.3390/bioengineering10111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
The use of biomass-based glycerol to produce chemicals with high added value is of great significance for solving the problem of glycerol surplus and thus reducing the production cost of biodiesel. The production of 1,2-propanediol (abbreviated as 1,2-PDO) and 1,3-propanediol (abbreviated as 1,3-PDO) via the hydrogenolysis of glycerol is one of the most representative and highest-potential processes for the comprehensive utilization of biomass-based glycerol. Glycerol hydrogenolysis may include several parallel and serial reactions (involving broken C-O and C-C bonds), and therefore, the catalyst is a key factor in improving the rate of glycerol hydrogenolysis and the selectivities of the target products. Over the past 20 years, glycerol hydrogenolysis has been extensively investigated, and until now, the developments of catalysts for glycerol hydrogenolysis have been active research topics. Non-precious metals, including Cu, Ni, and Co, and some precious metals (Ru, Pd, etc.) have been used as the active components of the catalysts for the hydrogenolysis of glycerol to 1,2-PDO, while precious metals such as Pt, Rh, Ru, Pd, and Ir have been used for the catalytic conversion of glycerol to 1,3-PDO. In this article, we focus on reviewing the research progress of the catalyst systems, including Cu-based catalysts and Pt-, Ru-, and Pd-based catalysts for the hydrogenolysis of glycerol to 1,2-PDO, as well as Pt-WOx-based and Ir-ReOx-based catalysts for the hydrogenolysis of glycerol to 1,3-PDO. The influence of the properties of active components and supports, the effects of promoters and additives, and the interaction and synergic effects between active component metals and supports are also examined.
Collapse
Affiliation(s)
- Lan Ma
- Institute of Chemical Defense, Beijing 102205, China;
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Dehua He
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Altındaş C, Sher F, Smječanin N, Lima EC, Rashid T, Hai IU, Karaduman A. Synergistic interaction of metal loaded multifactorial nanocatalysts over bifunctional transalkylation for environmental applications. ENVIRONMENTAL RESEARCH 2023; 216:114479. [PMID: 36208784 DOI: 10.1016/j.envres.2022.114479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
A feasible and cost-effective process for utilization of toluene and heavy reformate is the conversion of its streams by transalkylation reaction into highly valuable xylenes. The process is usually catalysed by zeolites and the challenges to overcome in transalkylation of heavy reformate with toluene over zeolites are their selectivity, activity, long-term stability, and coke formation. Current study aimed to investigate xylenes production by transalkylation reaction on the synthesized metal-doped zeolite catalysts and to characterize prepared catalysts by FTIR, SEM, EDS and BET analysis. Toluene/heavy reformate modelled mixture was utilized as a feed. For the first time Beta and ZSM-5 catalysts with 10% (w/w) cerium and 0.1% (w/w) palladium were synthesized by calcination and wet impregnation method. Catalytic tests were performed by continuous-flow gas/solid catalytic fixed bed reactor at atmospheric pressure, 2 h-1 and 5 h-1 and 250, 300, 350 and 400 °C. Experimental results revealed that the highest heavy reformate conversion (98.94%) and toluene conversion (9.82%) were obtained over H-ZSM-5, at 400 °C and 2 h-1 WHSV. The highest xylene selectivity (11.53) was achieved over H-ZSM-5, and the highest p-xylene percentage (62.40%), using Ce-ZSM-5 catalyst. ZSM-5 catalysts showed more resistance to coke deposition than Beta zeolites. The present study delivers novel approach and catalysts, which have immense potential for developing safer and inexpensive transalkylation process in industry.
Collapse
Affiliation(s)
- Cüneyt Altındaş
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Ankara, 06100, Türkiye
| | - Farooq Sher
- Department of Engineering, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Narcisa Smječanin
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, PO Box 15003, ZIP, 91501-970, Porto Alegre, RS, Brazil
| | - Tazien Rashid
- Department of Chemical Engineering Technology, Government College University, Faisalabad, 38000, Pakistan; Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Irfan Ul Hai
- Department of Engineering, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ali Karaduman
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Ankara, 06100, Türkiye
| |
Collapse
|
3
|
Microwave enhanced catalytic hydration of acrolein to 3-hydroxypropionaldehyde using simultaneous cooling: Experimental and theoretical studies. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Insights into active tungsten species on Pt/W/SBA-15 catalysts for selective hydrodeoxygenation of glycerol to 1,3-propanediol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Wang Y, Zhou Z, Wang C, Zhao L, Xia Q. Hydrogenolysis of glycerol over TiO2-supported Pt-WOx catalysts: Effects of the TiO2 crystal phase and WOx loading. Front Chem 2022; 10:1004925. [PMID: 36212063 PMCID: PMC9532750 DOI: 10.3389/fchem.2022.1004925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022] Open
Abstract
The selective hydrogenolysis of glycerol to 1,3-propanediol (1,3-PDO) with high added value is attraction but challenging. Pt-WOx-based catalysts have been extensively studied in the selective hydrogenolysis of glycerol. The catalyst support and the physicochemical state of WOx play important roles on this reaction. In this paper, Pt-WOx catalysts supported on TiO2 with different crystal forms were prepared and studied for their catalytic performance in hydrogenolysis of glycerol. It was observed that the catalytic performance of anatase-type (A-type) TiO2-supported catalyst (Pt/W/A-Ti) is much better than that of the rutile-type (R-type) TiO2 catalyst (Pt/W/R-Ti) due to its higher stability. Furthermore, the influence of W loading amount and state were thoroughly investigated for the Pt/W/A-Ti catalysts, and Pt/W/A-TiO2 with 5 wt% loading of WOx achieved the best catalytic performance (100% conversion of glycerol and 41% yield of 1,3-PDO under the optimal reaction conditions), owing to the suitable WOx domains and high dispersion of W species, as evidenced by XRD patterns and TEM images. Mechanism study by in-situ DRIFTS experiments indicated that glycerol was first converted to 3-hydroxypropanal and then converted to 1,3-PDO through subsequent reactions.
Collapse
Affiliation(s)
- Yaju Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Zhiming Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Chao Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Yankuang Technology Co., Ltd., Shandong Energy Group Co., Ltd., Jinan, China
- *Correspondence: Chao Wang, ; Qineng Xia,
| | - Leihong Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, China
| | - Qineng Xia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
- *Correspondence: Chao Wang, ; Qineng Xia,
| |
Collapse
|
6
|
C–O Hydrogenolysis of C3–C4 Polyols Selectively to Terminal Diols over Pt/W/SBA-15 Catalysts. Catalysts 2022. [DOI: 10.3390/catal12091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pt/W/SBA-15 catalysts (with Pt-loading = 0.5–4 wt% and W-loading = 1 wt%) prepared by the sequential impregnation method were evaluated for selective C–O cleavage of erythritol and glycerol in an aqueous medium. The Pt and W particles dispersed on SBA-15 approached close proximity at higher Pt loadings and afforded synergistic enhancement in C–O hydrogenolysis activity/selectivity. 1,4-Butanediol yields of 30.9% (at 190 °C, 50 bar H2 and 24 h) and 1,3-propanediol yields of 34.4% (at 190 °C, 50 bar H2 and 12 h of reaction) were obtained over these catalysts. Pt nanoparticles (facilitating dissociative H2 adsorption and spillover) and W (present as acidic oligomeric WOx species; activating and coordinating the polyol via 1°-OH group) worked in tandem for the selective hydrogenolysis of polyols yielding terminal diols of industrial demand.
Collapse
|
7
|
Abstract
Humanity’s growing dependence on non-renewable resources and the ensuing environmental impact thus generated have spurred the search for alternatives to replace chemicals and energy obtained from petroleum derivatives. Within the group of biofuels, biodiesel has managed to expand worldwide at considerable levels, going from 20 million tn/year in 2010 to 47 million tn/year in 2022, boosting the supply of glycerol, a by-product of its synthesis that can be easily used as a renewable, clean, low-cost raw material for the manufacture of products for the chemical industry. The hydrogenolysis of glycerol leads to the production of glycols, 1,2-propylene glycol (1,2-PG) and 1,3-propylene glycol (1,3-PG). In particular, 1,3-PG has the highest added value and has multiple uses including its application as an additive in the polymer industry, the manufacture of cosmetics, cleaning products, cooling liquids, etc. This review focuses on the study of the hydrogenolysis of glycerol for the production of 1,3-PG, presenting the main reaction mechanisms and the catalysts employed, both in liquid and vapor phase. Engineering aspects and the effect of the operating variables to achieve maximum yields are discussed. Finally, studies related to the stability and the main deactivation mechanisms of catalytic systems are presented.
Collapse
|
8
|
Heterogeneous Catalysts for Conversion of Biodiesel-Waste Glycerol into High-Added-Value Chemicals. Catalysts 2022. [DOI: 10.3390/catal12070767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The valuable products produced from glycerol transformation have become a research route that attracted considerable benefits owing to their huge volumes in recent decades (as a result of biodiesel production as a byproduct) as well as a myriad of chemical and biological techniques for transforming glycerol into high-value compounds, such as fuel additives, biofuels, precursors and other useful chemicals, etc. Biodiesel has presented another challenge in the considerable increase in its byproduct (glycerol). This review provides a recent update on the transformation of glycerol with an exclusive focus on the various catalysts’ performance in designing reaction operation conditions. The different products observed and cataloged in this review involved hydrogen, acetol, acrolein, ethylene glycol, and propylene glycol (1,3-propanediol and 1,2-propanediol) from reforming and dehydration and hydrogenolysis reactions of glycerol conversions. The future prospects and critical challenges are finally presented.
Collapse
|
9
|
Wen Y, Liu S, Shen W, Fang Y. Study on activity and stability of Pt-Ru/WO x/Al 2O 3 catalyst in the glycerol selective hydrogenolysis to 1,3-propanediol. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2084390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yinglin Wen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Shiyu Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Weihua Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Yunjin Fang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
10
|
Zeng Y, Jiang L, Zhang X, Xie S, Pei Y, Qiao M, Li ZH, Xu H, Fan K, Zong B. W-doped Hierarchically Porous Silica Nanosphere Supported Platinum for Catalytic Glycerol Hydrogenolysis to 1,3-Propanediol. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Dehydroxylation of Glycerol on Pt Surfaces: An ab initio Molecular Dynamics Study. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
12
|
da Silva Ruy AD, de Brito Alves RM, Reis Hewer TL, de Aguiar Pontes D, Gomes Teixeira LS, Magalhães Pontes LA. Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Simulation of continuous catalytic conversion of glycerol into lactic acid in a microreactor system: A CFD study. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Zhang D, Zhang Q, Zhou Z, Li Z, Meng K, Fang T, You Z, Zhang G, Yin B, Shen J, Yang C, Yan W, Jin X. Hydrogenolysis of Glycerol to 1,3‐Propanediol: Are Spatial and Electronic Configuration of “Metal‐Solid Acid” Interface Key for Active and Durable Catalysts? ChemCatChem 2021. [DOI: 10.1002/cctc.202101316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongpei Zhang
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Quanxing Zhang
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Ziqi Zhou
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Ze Li
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Kexin Meng
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Tianqi Fang
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Zhenchao You
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Guangyu Zhang
- Sinopec Research Institute of Safety Engineering Qingdao Shandong Province 266580 P. R. China
| | - Bin Yin
- College of Fisheries Southwest University Chongqing 400700 P. R. China
| | - Jian Shen
- College of Environment and Resources Xiangtan University Xiangtan Hunan Province 411105 P. R. China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Wenjuan Yan
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| |
Collapse
|
15
|
In-situ hydrogenolysis of glycerol using hydrogen produced via aqueous phase reforming of glycerol over sonochemically synthesized nickel-based nano-catalyst. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Wu X, Hou Y, Zhang K, Cheng M. Dynamic optimization of 1, 3-propanediol fermentation process: A switched dynamical system approach. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wei R, Qu X, Xiao Y, Fan J, Geng G, Gao L, Xiao G. Hydrogenolysis of glycerol to propanediols over silicotungstic acid catalysts intercalated with CuZnFe hydrotalcite-like compounds. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Ziarani GM, Roshankar S, Mohajer F, Badiei A. The Synthesis and Application of Functionalized Mesoporous Silica SBA-15 as Heterogeneous Catalyst in Organic Synthesis. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210194444] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesoporous silica nanomaterials provide an extraordinary advantage for making
new and superior heterogeneous catalysts because of their surface silanol groups. The functionalized
mesoporous SBA-15, such as acidic, basic, BrÖnsted, lewis acid, and chiral catalysts,
are used for a wide range of organic syntheses. The importance of the chiral ligands,
which were immobilized on the SBA-15, was mentioned in this review to achieve chiral
products as valuable target molecules. Herein, their synthesis and application in different organic
transformations are reviewed from 2016 till date 2020.
Collapse
Affiliation(s)
| | - Shima Roshankar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
19
|
Wu F, Jiang H, Zhu X, Lu R, Shi L, Lu F. Effect of Tungsten Species on Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. CHEMSUSCHEM 2021; 14:569-581. [PMID: 33219614 DOI: 10.1002/cssc.202002405] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Indexed: 06/11/2023]
Abstract
Glycerol, as the major byproduct of biodiesel industry, is a cheap and green chemical feedstock. Following the expanded production of biodiesel, the oversupply of glycerol has led to increasing research of the catalytic conversion of glycerol. The selective hydrogenolysis of glycerol is an economical and sustainable way to produce 1,3-propanediol, which experiences a global growing demand, and valorize glycerol. However, the secondary hydroxy group of glycerol is sterically hindered by two primary hydroxy groups. As a result, 1,2-propanediol is the preferential product rather than 1,3-propanediol during conventional hydrogenolysis of glycerol. Currently, tungsten-containing bifunctional catalysts with metal and Brønsted acid sites are considered as a highly effective and atom-economical catalytic system for the selective hydrogenolysis of glycerol to 1,3-propanediol. Therefore, this Minireview summarized various tungsten-containing bifunctional catalysts for the hydrogenolysis of glycerol in detail and deeply discussed the relationship between tungsten species, metal active sites, and glycerol for selectively producing 1,3-propanediol.
Collapse
Affiliation(s)
- Fengliang Wu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Huifang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuhai Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Rui Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Lei Shi
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| |
Collapse
|
20
|
Saelee T, Limsoonthakul P, Aphichoksiri P, Rittiruam M, Lerdpongsiripaisarn M, Miyake T, Yamashita H, Mori K, Kuwahara Y, Praserthdam S, Praserthdam P. Experimental and computational study on roles of WO x promoting strong metal support promoter interaction in Pt catalysts during glycerol hydrogenolysis. Sci Rep 2021; 11:530. [PMID: 33436711 PMCID: PMC7804099 DOI: 10.1038/s41598-020-79764-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 11/09/2022] Open
Abstract
Biodiesel is of high interest due to increased demand for energy with the concern regarding more sustainable production processes. However, an inevitable by-product is glycerol. Hence, the conversion of this by-product to higher-value chemicals, especially 1,3-propanediol (1,3-PDO) via glycerol hydrogenolysis reaction, is one of the most effective pathways towards a profitable process. In general, this process is catalyzed by a highly active Pt-based catalyst supported on γ-Al2O3. However, its low 1,3-PDO selectivity and stability due to surface deactivation of such catalysts remained. This led to the surface modification by WOx to improve both the selectivity by means of the increased Brønsted acidity and the stability in terms of Pt leaching-resistance. Hence, we applied experimental and density functional theory (DFT)-based techniques to study the fundamentals of how WOx modified the catalytic performance in the Pt/γ-Al2O3 catalyst and provided design guidelines. The effects of WOx promoter on improved activity were due to the shifting of the total density of states towards the antibonding region evident by the total density of states (TDOS) profile. On the improved 1,3-PDO selectivity, the main reason was the increasing number of Brønsted acid sites due to the added WOx promoter. Interestingly, the stability improvement was due to the strong metal-support interaction (SMSI) that occurred in the catalyst, like typical high leaching-resistant catalysts. Also, the observed strong metal-support-promoter interaction (SMSPI) is an additional effect preventing leaching. The SMSPI stemmed from additional bonding between the WOx species and the Pt active site, which significantly strengthened Pt adsorption to support and a high electron transfer from both Pt and Al2O3 to WOx promoter. This suggested that the promising promoter for our reaction performed in the liquid phase would improve the stability if SMSI occurred, where the special case of the WOx promoter would even highly improve the stability through SMSPI. Nevertheless, various promoters that can promote SMSPI need investigations.
Collapse
Affiliation(s)
- Tinnakorn Saelee
- High-Performance Computing Unit (CECC-HCU), Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.,Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.,Saelee Research Group, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poonnapa Limsoonthakul
- Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.,Saelee Research Group, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phakaorn Aphichoksiri
- High-Performance Computing Unit (CECC-HCU), Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.,Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.,Saelee Research Group, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Meena Rittiruam
- High-Performance Computing Unit (CECC-HCU), Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.,Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.,Rittiruam Research Group, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mongkol Lerdpongsiripaisarn
- High-Performance Computing Unit (CECC-HCU), Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.,Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.,Saelee Research Group, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Takanori Miyake
- Faculty of Environmental and Urban Engineering Department of Chemical, Energy and Environmental Engineering, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand. .,Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Piyasan Praserthdam
- Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
21
|
Chen J, Xia Q, Wang Y, Huang Y. Progress in Production of 1, 3-propanediol From Selective Hydrogenolysis of Glycerol. FRONTIERS IN CHEMICAL ENGINEERING 2020. [DOI: 10.3389/fceng.2020.604624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
1,3-propanediol (1,3-PDO) is an important bulk chemical widely used in the polyester and polyurethane industry. The selective hydrogenolysis of glycerol to value-added 1,3-PDO is extremely attractive. However, the formation of 1,3-PDO is less thermodynamically stable than 1,2-PDO, and the steric hindrance effect in the reaction process makes the highly selective production of 1,3-PDO a great challenge. In this mini review, the recent research progress on the selective catalytic hydrogenolysis of glycerol to 1,3-PDO is overviewed and the catalytic mechanism of the reaction is summarized. We mainly focus on the different performances of each type of catalyst (Pt-W-based catalysts, Ir-Re based-catalysts, and other types) as well as the interactions between metals and supports. Finally, several personal perspectives on the opportunities and challenges within this promising field are discussed.
Collapse
|
22
|
Wen Y, Shen W, Li Y, Fang Y. Promoting effect of Ru in the Pt-Ru/WOx/Al2O3 catalyst for the selective hydrogenolysis of glycerol to 1,3-propanediol. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01908-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Abstract
Once a biorefinery is ready to operate, the main processed materials need to be completely evaluated in terms of many different factors, including disposal regulations, technological limitations of installation, the market, and other societal considerations. In biorefinery, glycerol is the main by-product, representing around 10% of biodiesel production. In the last few decades, the large-scale production of biodiesel and glycerol has promoted research on a wide range of strategies in an attempt to valorize this by-product, with its transformation into added value chemicals being the strategy that exhibits the most promising route. Among them, C3 compounds obtained from routes such as hydrogenation, oxidation, esterification, etc. represent an alternative to petroleum-based routes for chemicals such as acrolein, propanediols, or carboxylic acids of interest for the polymer industry. Another widely studied and developed strategy includes processes such as reforming or pyrolysis for energy, clean fuels, and materials such as activated carbon. This review covers recent advances in catalysts used in the most promising strategies considering both chemicals and energy or fuel obtention. Due to the large variety in biorefinery industries, several potential emergent valorization routes are briefly summarized.
Collapse
|
24
|
Bhowmik S, Darbha S. Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1794737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Susmita Bhowmik
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Srinivas Darbha
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
25
|
Dehydration of glycerol with silica–phosphate-supported copper catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04161-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Niu Y, Zhao B, Liang Y, Liu L, Dong J. Promoting Role of Oxygen Deficiency on a WO3-Supported Pt Catalyst for Glycerol Hydrogenolysis to 1,3-Propanediol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b07067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yufeng Niu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Binbin Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yu Liang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinxiang Dong
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Nikoorazm M, Khanmoradi M, Mohammadi M. Guanine‐La complex supported onto SBA‐15: A novel efficient heterogeneous mesoporous nanocatalyst for one‐pot, multi‐component Tandem Knoevenagel condensation–Michael addition–cyclization Reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5504] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohsen Nikoorazm
- Department of Chemistry, Faculty of ScienceIlam University P. O. Box 69315516 Ilam Iran
| | - Maryam Khanmoradi
- Department of Chemistry, Faculty of ScienceIlam University P. O. Box 69315516 Ilam Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of ScienceIlam University P. O. Box 69315516 Ilam Iran
| |
Collapse
|
28
|
Lei N, Zhao X, Hou B, Yang M, Zhou M, Liu F, Wang A, Zhang T. Effective Hydrogenolysis of Glycerol to 1,3‐Propanediol over Metal‐Acid Concerted Pt/WO
x
/Al
2
O
3
Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201900689] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nian Lei
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaochen Zhao
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Baolin Hou
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Man Yang
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Maoxiang Zhou
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fei Liu
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Aiqin Wang
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Tao Zhang
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| |
Collapse
|