1
|
Rezayati S, Morsali A. Functionalization of Magnetic UiO-66-NH 2 with a Chiral Cu(l-proline) 2 Complex as a Hybrid Asymmetric Catalyst for CO 2 Conversion into Cyclic Carbonates. Inorg Chem 2024; 63:6051-6066. [PMID: 38501387 DOI: 10.1021/acs.inorgchem.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In this study, a chiral [Cu(l-proline)2] complex-modified Fe3O4@SiO2@UiO-66-NH2(Zr) metal-organic framework [Fe3O4@SiO2@UiO-66-NH-Cu(l-proline)2] via multifunctionalization strategies was designed and synthesized. One simple approach to chiralize an achiral MOF-structure that cannot be directly chiralized using a chiral secondary agent like 4-hydroxy-l-proline. Therefore, this chiral catalyst was synthesized with a simple and multistep method. Accordingly, Fe3O4@SiO2@UiO-66-NH2 has been synthesized via Fe3O4 modification with tetraethyl orthosilicate and subsequently with ZrCl4 and 2-aminoterephthalic acid. The presence of the silica layer helps to stabilize the Fe3O4 core, while the bonding between Zr4+ and the -OH groups in the silica layer promotes the development of Zr-MOFs on the Fe3O4 surface, and then the surfaces of the synthesized magnetic MOFs composite are functionalized with 1,2-dichloroethane and Cu(II) complex with 4-hydroxy-l-proline, [Cu(l-proline)2] to afford the magnetically chiral nanocatalyst. Multiple techniques were employed to characterize this magnetically chiral nanocatalyst such as Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), powder X-ray diffraction (PXRD), circular dichroism (CD), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), and Brunauer-Emmett-Teller (BET) analyses. Moreover, a magnetically chiral nanocatalyst shows the asymmetric CO2 fixation reaction under solvent-free conditions at 80 °C and in ethanol under reflux conditions with up to 99 and 98% ee, respectively. Furthermore, the reaction mechanism was illustrated concerning the total energy of the reactant, intermediates and product, and the structural parameters were analyzed.
Collapse
Affiliation(s)
- Sobhan Rezayati
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran 14117-13116, Islamic Republic of Iran
| |
Collapse
|
2
|
Metal Organic Frameworks as Heterogeneous Catalysts in Olefin Epoxidation and Carbon Dioxide Cycloaddition. INORGANICS 2021. [DOI: 10.3390/inorganics9110081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metal–organic frameworks (MOFs) are a family of porous crystalline materials that serve in some cases as versatile platforms for catalysis. In this review, we overview the recent developments about the use of these species as heterogeneous catalysts in olefin epoxidation and carbon dioxide cycloaddition. We report the most important results obtained in this field relating them to the presence of specific organic linkers, metal nodes or clusters and mixed-metal species. Recent advances obtained with MOF nanocomposites were also described. Finally we compare the results and summarize the major insights in specific Tables, outlining the major challenges for this emerging field. This work could promote new research aimed at producing coordination polymers and MOFs able to catalyse a broader range of CO2 consuming reactions.
Collapse
|
3
|
Ding LG, Yao BJ, Wu WX, Yu ZG, Wang XY, Kan JL, Dong YB. Metalloporphyrin and Ionic Liquid-Functionalized Covalent Organic Frameworks for Catalytic CO 2 Cycloaddition via Visible-Light-Induced Photothermal Conversion. Inorg Chem 2021; 60:12591-12601. [PMID: 34337951 DOI: 10.1021/acs.inorgchem.1c01975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report the construction of a porphyrin and imidazolium-ionic liquid (IL)-decorated and quinoline-linked covalent organic framework (COF, abbreviated as COF-P1-1) via a three-component one-pot Povarov reaction. After post-synthetic metallization of COF-P1-1 with Co(II) ions, the metallized COF-PI-2 is generated. COF-PI-2 is chemically stable and displays highly selective CO2 adsorption and good visible-light-induced photothermal conversion ability (ΔT = 26 °C). Furthermore, the coexistence of Co(II)-porphyrin and imidazolium-IL within COF-PI-2 has guaranteed its highly efficient activity for CO2 cycloaddition. Of note, the needed thermal energy for the reactions is derived from the photothermal conversion of the Co(II)-porphyrin COF upon visible-light irradiation. More importantly, the CO2 cycloaddition herein is a "window ledge" reaction, and it can proceed smoothly upon natural sunlight irradiation. In addition, a scaled-up CO2 cycloaddition can be readily achieved using a COF-PI-2@chitosan aerogel-based fixed-bed model reactor. Our research provides a new avenue for COF-based greenhouse gas disposal in an eco-friendly and energy- and source-saving way.
Collapse
Affiliation(s)
- Luo-Gang Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Bing-Jian Yao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Xiu Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhi-Gao Yu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiao-Yu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
4
|
Kasinathan P, Lang C, Gaigneaux EM, Jonas AM, Fernandes AE. Influence of Site Pairing in Hydrophobic Silica-Supported Sulfonic Acid Bifunctional Catalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13743-13751. [PMID: 33170709 DOI: 10.1021/acs.langmuir.0c01759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Imparting hydrophobicity to solid acid catalysts is critical to regulating their performances by allowing the creation of a less polar environment and improved partitioning of the reactants. Here we present different approaches for the preparation of silica-based catalysts comprising sulfonic acid (-SO3H) sites and hydrophobic decyl (-C10) chains by either simultaneous or sequential postfunctionalization of an azide-functionalized mesoporous silica platform. This set of hybrid bifunctional catalysts is compared in the model esterification of octanol with acetic acid, and the influence of the preparation methods together with the resulting site spatial distribution is discussed. In parallel, we show that pairing the two functional groups affords a maximum synergistic effect compared to more traditional mixed catalysts with random distributions of acid and hydrophobic functions.
Collapse
Affiliation(s)
- Palraj Kasinathan
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Charlotte Lang
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Eric M Gaigneaux
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Antony E Fernandes
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
- Certech, Rue Jules Bordet 45, 7180 Seneffe, Belgium
| |
Collapse
|
5
|
Tran YBN, Nguyen PTK, Luong QT, Nguyen KD. Series of M-MOF-184 (M = Mg, Co, Ni, Zn, Cu, Fe) Metal–Organic Frameworks for Catalysis Cycloaddition of CO2. Inorg Chem 2020; 59:16747-16759. [DOI: 10.1021/acs.inorgchem.0c02807] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Y. B. N. Tran
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| | - Phuong T. K. Nguyen
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| | - Quang T. Luong
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| | - Khoi D. Nguyen
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
6
|
Zhang Y, Su K, Hong Z, Han Z, Yuan D. Robust Cationic Calix[4]arene Polymer as an Efficient Catalyst for Cycloaddition of Epoxides with CO2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yiwen Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, China
| | - Zixiao Hong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Zhengbo Han
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, China
| |
Collapse
|