1
|
Wang Z, Zhou X, Wang G, Tong Q, Wan H, Dong L. High-Performance Ir 1/CeO 2 Single-Atom Catalyst for the Oxidation of Toluene. Inorg Chem 2024; 63:7241-7254. [PMID: 38581386 DOI: 10.1021/acs.inorgchem.3c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
The elimination of toluene is an obligatory target with increasing VOC emission in recent years. This study successfully prepared a single-atom Ir catalyst (Ir1/CeO2) by a simple incipient wetness impregnation method, confirmed by in situ CO DRIFTS and AC-HAADF-STEM. Compared to the cluster Ir catalyst (Ir/CeO2-C), Ir1/CeO2 exhibited excellent catalytic performance, stability, and water resistance for the oxidation of toluene. By Raman, H2-TPR, O2-TPD, and XPS experiments, abundant oxygen defects and a unique Ir3+-Ov-Ce3+ structure were formed for the Ir1/CeO2 sample because it had a lower oxygen vacancy formation energy. Furthermore, the DFT results revealed that the Ir1/CeO2 sample had a lower ring-opening energy barrier and adsorption energy of the ring-opening products, which was the rate-determining step for the oxidation of toluene. This work provides instructive insights into the construction of Ir/CeO2 catalysts for the highly efficient removal of VOCs.
Collapse
Affiliation(s)
- Zhiqiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Xiaomei Zhou
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gehui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Liang X, Fu N, Yao S, Li Z, Li Y. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J Am Chem Soc 2022; 144:18155-18174. [PMID: 36175359 DOI: 10.1021/jacs.1c12642] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-atom-site catalysts (SASCs) featuring maximized atom utilization and isolated active sites have progressed tremendously in recent years as a highly prosperous branch of catalysis research. Varieties of SASCs have been developed that show excellent performance in many catalytic applications. The major goal of SASC research is to establish feasible synthetic strategies for the preparation of high-performance catalysts, to achieve an in-depth understanding of the active-site structures and catalytic mechanisms, and to develop practical catalysts with industrial value. This Perspective describes the up-to-date development of SASCs and related catalysts, such as dual-atom-site catalysts (DASCs) and nano-single-atom-site catalysts (NSASCs), analyzes the current challenges encountered by these catalysts for industrial applications, and proposes their possible future development path.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ninghua Fu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shuangchao Yao
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.,Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
3
|
Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00169-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractWell-defined atomically dispersed metal catalysts (or single-atom catalysts) have been widely studied to fundamentally understand their catalytic mechanisms, improve the catalytic efficiency, increase the abundance of active components, enhance the catalyst utilization, and develop cost-effective catalysts to effectively reduce the usage of noble metals. Such single-atom catalysts have relatively higher selectivity and catalytic activity with maximum atom utilization due to their unique characteristics of high metal dispersion and a low-coordination environment. However, freestanding single atoms are thermodynamically unstable, such that during synthesis and catalytic reactions, they inevitably tend to agglomerate to reduce the system energy associated with their large surface areas. Therefore, developing innovative strategies to stabilize single-atom catalysts, including mass-separated soft landing, one-pot pyrolysis, co-precipitation, impregnation, atomic layer deposition, and organometallic complexation, is critically needed. Many types of supporting materials, including polymers, have been commonly used to stabilize single atoms in these fabrication techniques. Herein, we review the stabilization strategies of single-atom catalyst, including different synthesis methods, specific metals and carriers, specific catalytic reactions, and their advantages and disadvantages. In particular, this review focuses on the application of polymers in the synthesis and stabilization of single-atom catalysts, including their functions as carriers for metal single atoms, synthetic templates, encapsulation agents, and protection agents during the fabrication process. The technical challenges that are currently faced by single-atom catalysts are summarized, and perspectives related to future research directions including catalytic mechanisms, enhancement of the catalyst loading content, and large-scale implementation are proposed to realize their practical applications.
Graphical Abstract
Single-atom catalysts are characterized by high metal dispersibility, weak coordination environments, high catalytic activity and selectivity, and the highest atom utilization. However, due to the free energy of the large surface area, individual atoms are usually unstable and are prone to agglomeration during synthesis and catalytic reactions. Therefore, researchers have developed innovative strategies, such as soft sedimentation, one-pot pyrolysis, coprecipitation, impregnation, step reduction, atomic layer precipitation, and organometallic complexation, to stabilize single-atom catalysts in practical applications. This article summarizes the stabilization strategies for single-atom catalysts from the aspects of their synthesis methods, metal and support types, catalytic reaction types, and its advantages and disadvantages. The focus is on the application of polymers in the preparation and stabilization of single-atom catalysts, including metal single-atom carriers, synthetic templates, encapsulation agents, and the role of polymers as protection agents in the manufacturing process. The main feature of polymers and polymer-derived materials is that they usually contain abundant heteroatoms, such as N, that possess lone-pair electrons. These lone-pair electrons can anchor the single metal atom through strong coordination interactions. The coordination environment of the lone-pair electrons can facilitate the formation of single-atom catalysts because they can enlarge the average distance of a single precursor adsorbed on the polymer matrix. Polymers with nitrogen groups are favorable candidates for dispersing active single atoms by weakening the tendency of metal aggregation and redistributing the charge densities around single atoms to enhance the catalytic performance. This review provides a summary and analysis of the current technical challenges faced by single-atom catalysts and future research directions, such as the catalytic mechanism of single-atom catalysts, sufficiently high loading, and large-scale implementation.
Collapse
|
4
|
Sevostyanova NT, Batashev SA. Catalysts for Carbonylation of Alcohols to Obtain Carboxylic Acids and Esters. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s107042722208002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Study on Rh(I)-o-aminophenol Catalyst Catalyzed Carbonylation of Methanol to Acetic Acid. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Halide-free carbonylation of methanol with H-MOR supported CuCeOx catalysts. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Kaiser SK, Clark AH, Cartocci L, Krumeich F, Pérez-Ramírez J. Sustainable Synthesis of Bimetallic Single Atom Gold-Based Catalysts with Enhanced Durability in Acetylene Hydrochlorination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004599. [PMID: 33432775 DOI: 10.1002/smll.202004599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Gold single-atom catalysts (SACs) exhibit outstanding reactivity in acetylene hydrochlorination to vinyl chloride, but their practical applicability is compromised by current synthesis protocols, using aqua regia as chlorine-based dispersing agent, and their high susceptibility to sintering on non-functionalized carbon supports at >500 K and/or under reaction conditions. Herein, a sustainable synthesis route to carbon-supported gold nanostructures in bimetallic catalysts is developed by employing salts as alternative chlorine source, allowing for tailored gold dispersion, ultimately reaching atomic level when using H2 PtCl6 . To rationalize these observations, several synthesis parameters (i.e., pH, Cl-content) as well as the choice of metal chlorides are evaluated, hinting at the key role of platinum in promoting a chlorine-mediated dispersion mechanism. This can be further extrapolated to redisperse large gold agglomerates (>70 nm) on carbon carriers into isolated atoms, which has important implications for catalyst regeneration. Another key role of platinum single atoms is to inhibit the sintering of their spatially isolated gold-based analogs up to 800 K and during acetylene hydrochlorination, without compromising the intrinsic activity of Au(I)-Cl active sites. Accordingly, exploiting cooperativity effects of a second metal is a promising strategy towards practical applicability of gold SACs, opening up exciting opportunities for multifunctional single-atom catalysis.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Adam H Clark
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Lucrezia Cartocci
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Frank Krumeich
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
8
|
Affiliation(s)
- Chunyan Tu
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
9
|
Feng S, Lin X, Song X, Mei B, Mu J, Li J, Liu Y, Jiang Z, Ding Y. Constructing Efficient Single Rh Sites on Activated Carbon via Surface Carbonyl Groups for Methanol Carbonylation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Siquan Feng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiangsong Lin
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xiangen Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Mu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingwei Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Liu
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
10
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 366] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
11
|
Chen TR, Wang YX, Lee WJ, Chen KHC, Chen JD. A reduced graphene oxide-supported iridium nanocatalyst for selective transformation of alcohols into carbonyl compounds via a green process. NANOTECHNOLOGY 2020; 31:285705. [PMID: 32191921 DOI: 10.1088/1361-6528/ab814d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A nanocatalyst constructed from reduced graphene oxide and iridium atoms (RGOIrNc) showed high selectivity (99%-100%) and reliability for the transformation of aromatic alcohols into carbonyl compounds via ultrasonication without using harmful chemicals and solvents. Experimental data including Fourier transform infrared spectroscopy, x-ray diffraction, spherical-aberration-corrected field emission transmission electron microscopy and Raman spectra confirmed the nanostructure of the RGOIrNc. Noticeably, the structural characteristics of this catalyst remained unchanged within 25 catalytic cycles and the activity and selectivity for the transformation of benzylic alcohols showed good stability. The average turnover frequency is greater than 9000 h-1, the total turnover number is more than 150 000 after 25 catalytic cycles and the productivity of carbonyl compounds reaches 376 048 [Formula: see text], indicating that RGOIrNc catalyst has good durability and stability and high 'greenness'.
Collapse
Affiliation(s)
- Tsun-Ren Chen
- Department of Applied Chemistry, National Ping Tung University, Pingtong City, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Preparation and regeneration of supported single-Ir-site catalysts by nanoparticle dispersion via CO and nascent I radicals. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Feng S, Lin X, Song X, Liu Y, Jiang Z, Hemberger P, Bodi A, Ding Y. The role of H2 on the stability of the single-metal-site Ir1/AC catalyst for heterogeneous methanol carbonylation. J Catal 2020. [DOI: 10.1016/j.jcat.2019.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Tong C, Zhang J, Chen W, Liu X, Ye L, Yuan Y. Combined halide-free Cu-based catalysts with triple functions for heterogeneous conversion of methanol into methyl acetate. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01321k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combined catalyst exhibits extraordinary MA selectivity, which can be ascribed to the nearly anhydrous conditions achieved by WGSR catalyst CuCeO.
Collapse
Affiliation(s)
- Chaoli Tong
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jinping Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Weikun Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xiaoying Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Linmin Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Youzhu Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|