1
|
Al-Qwairi FO, Shaheen Shah S, Shabi AH, Khan A, Aziz MA. Stainless Steel Mesh in Electrochemistry: Comprehensive Applications and Future Prospects. Chem Asian J 2024; 19:e202400314. [PMID: 39014972 DOI: 10.1002/asia.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Stainless steel mesh (SSM) has emerged as a cornerstone in electrochemical applications owing to its exemplary versatility, electrical conductivity, mechanical robustness, and corrosion resistance. This state-of-the-art review delves into the diverse roles of SSM across a spectrum of electrochemical domains, including energy conversion and storage devices, water treatment technologies, electrochemical sensors, and catalysis. We meticulously explore its deployment in supercapacitors, batteries, and fuel cells, highlighting its utility as a current collector, electrode, and separator. The review further discusses the critical significance of SSM in water treatment processes, emphasizing its efficacy in supporting membranes and facilitating electrocoagulation, as well as its novel uses in electrochemical sensing and catalysis, which include electrosynthesis and bioelectrochemistry. Each section delineates the recent advancements, identifies the inherent challenges, and suggests future directions for leveraging SSM in electrochemical technologies. This comprehensive review showcases the current state of knowledge and articulates the novel integration of SSM with emerging materials and technologies, thereby establishing a new paradigm for sustainable and efficient electrochemical applications. Through critical analysis and insightful recommendations, this review positions itself as a seminal contribution, paving the way for researchers and practitioners to harness the full potential of SSM in advancing the electrochemistry frontiers.
Collapse
Affiliation(s)
- Fatima Omar Al-Qwairi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - A H Shabi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Abuzar Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Saulat H, Yang J, Yan T, Raza W, Song W, He G. W-MEL zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Li Y, Li Y, Yang Z, Xu W, Gui T, Wu X, Zhu M, Chen X, Kita H. Rapid synthesis of high-selective Al-rich beta zeolite membrane via an organic template-free route for pervaporation dehydration of water-n-butanol mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Liu Y, Wu C, Zhang Y, Zhao Q, Zhang B. Smart Hierarchical Zeolitic Imidazolate Framework-Coated Stainless Steel Meshes with Switchable Wettability for Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8374-8381. [PMID: 35771126 DOI: 10.1021/acs.langmuir.2c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective filtration based on superwetting materials has brought about widespread attention in the field of oil/water separation. In this study, a ZIF-L@8-coated stainless steel mesh (ZIF-L@8-coated SSM) was prepared via in situ growth of two-dimensional leaf-shaped ZIF-L nanosheets on SSM, followed by heterogeneous epitaxial growth of ZIF-8 on a ZIF-L coating. The synthesized ZIF-L@8-coated SSM with a hierarchical micro/nanoscale structure exhibited outstanding switchable wettability between underwater superoleophobicity and underoil superhydrophobicity upon respective prewetting using water and oil without additional external stimuli. It possessed excellent separation performances and stabilities with respect to various types of oil/water mixtures. The switchable wettability mechanism was analyzed and elucidated in detail. The synthesized ZIF-L@8-coated SSM with switchable wettability in this study would have great potential in on-demand oil/water separation.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| | - Chao Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| | - Yao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| | - Qi Zhao
- School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Baoquan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
5
|
Facile Construction and Fabrication of a Superhydrophobic and Super Oleophilic Stainless Steel Mesh for Separation of Water and Oil. NANOMATERIALS 2022; 12:nano12101661. [PMID: 35630883 PMCID: PMC9147946 DOI: 10.3390/nano12101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022]
Abstract
The fluoride-free fabrication of superhydrophobic materials for the separation of oil/water mixtures has received widespread attention because of frequent offshore oil exploration and chemical leakage. In recent years, oil/water separation materials, based on metal meshes, have drawn much attention, with significant advantages in terms of their high mechanical strength, easy availability, and long durability. However, it is still challenging to prepare superhydrophobic metal meshes with high-separation capacity, low costs, and high recyclability for dealing with oil–water separation. In this work, a superhydrophobic and super oleophilic stainless steel mesh (SSM) was successfully prepared by anchoring Fe2O3 nanoclusters (Fe2O3-NCs) on SSM via the in-situ flame synthesis method and followed by further modification with octadecyltrimethoxysilane (OTS). The as-prepared SSM with Fe2O3-NCs and OTS (OTS@Fe2O3-NCs@SSM) was confirmed by a field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and X-ray diffractometer (XRD). The oil–water separation capacity of the sample was also measured. The results show that the interlaced and dense Fe2O3-NCs, composed of Fe2O3 nanoparticles, were uniformly coated on the surface of the SSM after the immerging-burning process. Additionally, a compact self-assembled OTS layer with low surface energy is coated on the surface of Fe2O3-NCs@SSM, leading to the formation of OTS@Fe2O3-NCs@SSM. The prepared OTS@Fe2O3-NCs@SSM shows excellent superhydrophobicity, with a water static contact angle of 151.3°. The separation efficiencies of OTS@Fe2O3-NCs@SSM for the mixtures of oil/water are all above 98.5%, except for corn oil/water (97.5%) because of its high viscosity. Moreover, the modified SSM exhibits excellent stability and recyclability. This work provides a facile approach for the preparation of superhydrophobic and super oleophilic metal meshes, which will lead to advancements in their large-scale applications on separating oil/water mixtures.
Collapse
|
6
|
Wang Q, Xie D, Chen J, Luo J, Chen G, Yu M. Straightforward fabrication of robust and healable superhydrophobic steel mesh based on polydimethylsiloxane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Wang
- Institute of Biological and Medical Engineering Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center Guangzhou China
| | - Dong Xie
- Institute of Biological and Medical Engineering Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center Guangzhou China
| | - Junjia Chen
- Institute of Biological and Medical Engineering Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center Guangzhou China
| | - Jie Luo
- School of Materials Science and Hydrogen Energy, Guangdong Key Laboratory for Hydrogen Energy Technologies Foshan University Foshan China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
| | - Mingguang Yu
- School of Materials Science and Hydrogen Energy, Guangdong Key Laboratory for Hydrogen Energy Technologies Foshan University Foshan China
| |
Collapse
|
7
|
Yao H, Lu X, Chen S, Yu C, He QS, Xin Z. A Robust Polybenzoxazine/SiO2 Fabric with Superhydrophobicity for High-Flux Oil/Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hongjie Yao
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Lu
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Siwei Chen
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changyong Yu
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro B2N 5E3, Nova Scotia, Canada
| | - Zhong Xin
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Cai Y, Zhao Q, Quan X, Zhu J, Zhou C. Corrosion-Resistant Hydrophobic MFI-Type Zeolite-Coated Mesh for Continuous Oil–Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05923] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yongwei Cai
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
- Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN, U.K
| | - Qi Zhao
- Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN, U.K
| | - Xuejun Quan
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiao Zhu
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chao Zhou
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
9
|
Zhang G, Jia X, Xing J, Shen S, Zhou X, Yang J, Guo Y, Bai R. A Facile and Fast Approach To Coat Various Substrates with Poly(styrene-co-maleic anhydride) and Polyethyleneimine for Oil/Water Separation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03465] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ganwei Zhang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Xinying Jia
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Jiale Xing
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Shusu Shen
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Xiaoji Zhou
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Jingjing Yang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Yongfu Guo
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Renbi Bai
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| |
Collapse
|