1
|
Saud A, Gupta S, Allal A, Preud’homme H, Shomar B, Zaidi SJ. Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies. ACS OMEGA 2024; 9:29088-29113. [PMID: 39005778 PMCID: PMC11238215 DOI: 10.1021/acsomega.3c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 07/16/2024]
Abstract
Water pollution remains a widespread problem, affecting the health and wellbeing of people around the globe. While current advancements in wastewater treatment and desalination show promise, there are still challenges that need to be overcome to make these technologies commercially viable. Nanotechnology plays a pivotal role in water purification and desalination processes today. However, the release of nanoparticles (NPs) into the environment without proper safeguards can lead to both physical and chemical toxicity. Moreover, many methods of NP synthesis are expensive and not environmentally sustainable. The utilization of biomass as a source for the production of NPs has the potential to mitigate issues pertaining to cost, sustainability, and pollution. The utilization of biobased nanomaterials (bio-NMs) sourced from biomass has garnered attention in the field of water purification due to their cost-effectiveness, biocompatibility, and biodegradability. Several research studies have been conducted to efficiently produce NPs (both inorganic and organic) from biomass for applications in wastewater treatment. Biosynthesized materials such as zinc oxide NPs, phytogenic magnetic NPs, biopolymer-coated metal NPs, cellulose nanocrystals, and silver NPs, among others, have demonstrated efficacy in enhancing the process of water purification. The utilization of environmentally friendly NPs presents a viable option for enhancing the efficiency and sustainability of water pollution eradication. The present review delves into the topic of biomass, its origins, and the methods by which it can be transformed into NPs utilizing an environmentally sustainable approach. The present study will examine the utilization of greener NPs in contemporary wastewater and desalination technologies.
Collapse
Affiliation(s)
- Asif Saud
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Soumya Gupta
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | - Ahmed Allal
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | | | - Basem Shomar
- Environmental
Science Center, Qatar University, , P.O. Box 2713, Doha, Qatar
| | - Syed Javaid Zaidi
- UNESCO
Chair on Desalination and Water Treatment, Center for Advanced Materials
(CAM), Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Ostadi E, Mohammadi N. Does pervasive interconnected network of cellulose nanocrystals in nanocomposite membranes address simultaneous mechanical strength/water permeability/salt rejection improvement? Carbohydr Polym 2024; 325:121588. [PMID: 38008478 DOI: 10.1016/j.carbpol.2023.121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
In this research work, we investigated the effect of two cellulose nanocrystal (CNC)-related parameters, namely aspect ratio and loading content on the mechanical and desalination performance of a cellulose diacetate (CDA) model membrane system. Dispersion of high aspect ratio (HAR) CNCs in the CDA resulted in different types of nanoassembly, represented by evaluating the mechanical efficacy coefficient (CFE), viscoelastic responses and separation performance of the nanocomposite membranes. Accordingly, 0.15 and 0.25 wt% showed random isolated dispersion and tight polymer-nanorod network, while 0.50 and 0.75 wt% conformed to nanorods' pervasive interconnected network (PIN) through side-by-side aggregation and intensive bundle alignment, respectively. Specifically, the nanocomposite membrane containing 0.50 wt% HAR-CNCs simultaneously demonstrated improved mechanical strength along with mitigated water permeability/salt rejection tradeoff for brackish water desalination. This concurrent boosting was attributed to the effective mechanical reinforcement mechanism induced by the percolating network along with its partial aggregation-caused bi-continuous and electrostatically-controlled nano-pathways, orchestrating the separation tradeoff. It confirmed our hypothesis that a nanocomposite membrane with metamaterial characteristic could be obtained via manipulating the dispersion state of CNC rods in the CDA, triggering coincided optimization of mechanical strength and desalination performance.
Collapse
Affiliation(s)
- Elham Ostadi
- Department of Polymer and Color Engineering, AmirKabir University of Technology, P.O. Box 1591634311, Tehran, Iran.
| | - Naser Mohammadi
- Department of Polymer and Color Engineering, AmirKabir University of Technology, P.O. Box 1591634311, Tehran, Iran.
| |
Collapse
|
3
|
Al-Harby NF, El Batouti M, Elewa MM. A Comparative Analysis of Pervaporation and Membrane Distillation Techniques for Desalination Utilising the Sweeping Air Methodology with Novel and Economical Pervaporation Membranes. Polymers (Basel) 2023; 15:4237. [PMID: 37959917 PMCID: PMC10648555 DOI: 10.3390/polym15214237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
This study used the sweeping air approach to conduct a comparative analysis of pervaporation (PV) and membrane distillation (MD) in the context of desalinating saline/hypersaline water. An experimental setup of the sweeping air arrangement was designed and built at a laboratory size to conduct the research. The desalination process using PV used innovatively designed cellulose acetate (CA) membranes specifically adapted for this purpose. Conversely, in the studies involving MD, hydrophobic polytetrafluoroethylene (PTFE) membranes were utilised. CA membranes were fabricated in our laboratory using the phase inversion approach. The physicochemical characteristics of the membranes were assessed using many methodologies, including FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurement, and water uptake analysis. This facilitated a more comprehensive comprehension of the impact of the alkaline treatment on these features. The variables that were examined included the kind of membrane, the pore size of the PTFE membrane, the composition of the casting solution of CA, the concentration of the feed solution, the temperature of the feed, and the temperature of the condenser cooling water. The morphologies of the membranes were examined using SEM. The study's findings indicated that the use of MD resulted in a greater flow and a remarkable percentage of salt rejection (% SR). Furthermore, it was observed that the flux was positively correlated with the feed temperature, while it exhibited an inverse relationship with the cooling water temperature. Moreover, it was observed that the impact of the pore size of the PTFE membrane on the desalination process was found to be minimal. The most optimal outcomes obtained were 13.35 kg/m2 h with a percentage salt rejection (% SR) of 99.86, and 17.96 kg/m2 h with a % SR of 99.83 at a temperature of 70 °C, while using MD and PV technologies, respectively. Furthermore, both methods demonstrated the capability to desalinate very salty solutions with a salinity level of up to 160 g/L, thereby yielding potable water in a single step.
Collapse
Affiliation(s)
- Nouf F. Al-Harby
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mervette El Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt;
| | - Mahmoud M. Elewa
- Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt;
| |
Collapse
|
4
|
Sheng R, Gu L, Wang Z, Liu Y, Gu Y, Wang L. An effective cellulose triacetate interlayer to construct a dendrite-free Zinc anode for advanced aqueous zinc-ion batteries. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Wang Y, Wen S, Peng B, Luo X, Liu X, Yang T, Wang B, Zhang Q. Cyclodextrin-based pervaporation membranes for low-temperature seawater desalination. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
6
|
Saud A, Saleem H, Zaidi SJ. Progress and Prospects of Nanocellulose-Based Membranes for Desalination and Water Treatment. MEMBRANES 2022; 12:membranes12050462. [PMID: 35629789 PMCID: PMC9147932 DOI: 10.3390/membranes12050462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022]
Abstract
Membrane-based desalination has proved to be the best solution for solving the water shortage issues globally. Membranes are extremely beneficial in the effective recovery of clean water from contaminated water sources, however, the durability as well as the separation efficiency of the membranes are restricted by the type of membrane materials/additives used in the preparation processes. Nanocellulose is one of the most promising green materials for nanocomposite preparation due to its biodegradability, renewability, abundance, easy modification, and exceptional mechanical properties. This nanocellulose has been used in membrane development for desalination application in the recent past. The study discusses the application of membranes based on different nanocellulose forms such as cellulose nanocrystals, cellulose nanofibrils, and bacterial nanocellulose for water desalination applications such as nanofiltration, reverse osmosis, pervaporation, forward osmosis, and membrane distillation. From the analysis of studies, it was confirmed that the nanocellulose-based membranes are effective in the desalination application. The chemical modification of nanocellulose can definitely improve the surface affinity as well as the reactivity of membranes for the efficient separation of specific contaminants/ions.
Collapse
Affiliation(s)
- Asif Saud
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.); (H.S.)
- Industrial Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Haleema Saleem
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.); (H.S.)
| | - Syed Javaid Zaidi
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.); (H.S.)
- Correspondence: ; Tel.: +974-44037723
| |
Collapse
|
7
|
Varghese RT, Cherian RM, Antony T, Tharayil A, Das H, Kargarzadeh H, Chirayil CJ, Thomas S. A REVIEW ON THE APT BIOADSORBENT MEMBRANE- NANOCELLULOSE FOR EFFECTIVE REMOVAL OF POLLUTANTS FROM AQUEOUS SOLUTIONS. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Genduso G, Missinne A, Ali Z, Ogieglo W, Van der Bruggen B, Pinnau I. Hydrophobic polydimethylsiloxane thin-film composite membranes for the efficient pervaporative desalination of seawater and brines. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Kamtsikakis A, Delepierre G, Weder C. Cellulose nanocrystals as a tunable nanomaterial for pervaporation membranes with asymmetric transport properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Prihatiningtyas I, Hartanto Y, Van der Bruggen B. Ultra-high flux alkali-treated cellulose triacetate/cellulose nanocrystal nanocomposite membrane for pervaporation desalination. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Castro-Muñoz R. Breakthroughs on tailoring pervaporation membranes for water desalination: A review. WATER RESEARCH 2020; 187:116428. [PMID: 33011568 DOI: 10.1016/j.watres.2020.116428] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Due to the increase in worldwide population and urbanization, water scarcity is today one of the tough challenges of society. To date, several ongoing initiatives and strategies are aiming to find feasible alternatives to produce drinking water. Seawater desalination is addressed as a latent alternative to solve such an issue. When dealing with desalination, membrane-based technologies (such as reverse osmosis, membrane distillation, pervaporation, among others) have been successfully proposed. Pervaporation (PV) is likely the membrane operation with the less permeation rate but providing high rejection of salts. Thereby, "membranologists" are extensively working in developing new suitable membranes for pervaporation desalination. Therefore, the goal of this review paper is to elucidate and provide a comprehensive outlook of the most recent works (over the last 5-years) at developing new concepts of membranes (e.g. ultra-thin, mixed matrix/composite and inorganic) for desalination, as well as the relevant strategies in fabricating enhanced PV membranes. At this point, an important emphasis has been paid to the relevant insights in the field. This paper also addresses some principles of PV and the main drawbacks of the technique and its membranes. Through reviewing the literature, the future trends, needs, and recommendations for the new researchers are given.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110Toluca de Lerdo, Mexico.
| |
Collapse
|
12
|
|
13
|
Prihatiningtyas I, Hartanto Y, Ballesteros MSR, Van der Bruggen B. Cellulose triacetate/
LUDOX‐SiO
2
nanocomposite for synthesis of pervaporation desalination membranes. J Appl Polym Sci 2020. [DOI: 10.1002/app.50000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Indah Prihatiningtyas
- Department of Chemical Engineering KU Leuven Leuven Belgium
- Department of Chemical Engineering Mulawarman University Samarinda Indonesia
| | - Yusak Hartanto
- Materials and Process Engineering (iMMC‐IMAP) UC Louvain Louvain‐la‐Neuve Belgium
| | | | - Bart Van der Bruggen
- Department of Chemical Engineering KU Leuven Leuven Belgium
- Faculty of Engineering and the Built Environment Tshwane University of Technology Pretoria South Africa
| |
Collapse
|
14
|
Moore II JP, Dachavaram SS, Bommagani S, Penthala NR, Venkatraman P, Foster EJ, Crooks PA, A. Hestekin J. Oxone ®-Mediated TEMPO-Oxidized Cellulose Nanomaterials form I and form II. Molecules 2020; 25:molecules25081847. [PMID: 32316421 PMCID: PMC7221945 DOI: 10.3390/molecules25081847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 11/23/2022] Open
Abstract
The 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation of cellulose, when mediated with Oxone® (KHSO5), can be performed simply and under mild conditions. Furthermore, the products of the reaction can be isolated into two major components: Oxone®-mediated TEMPO-oxidized cellulose nanomaterials Form I and Form II (OTO-CNM Form I and Form II). This study focuses on the characterization of the properties of OTO-CNMs. Nanoparticle-sized cellulose fibers of 5 and 16 nm, respectively, were confirmed through electron microscopy. Infrared spectroscopy showed that the most carboxylation presented in Form II. Conductometric titration showed a two-fold increase in carboxylation from Form I (800 mmol/kg) to Form II (1600 mmol/kg). OTO-CNMs showed cellulose crystallinity in the range of 64–68% and crystallite sizes of 1.4–3.3 nm, as shown through XRD. OTO-CNMs show controlled variability in hydrophilicity with contact angles ranging from 16 to 32°, within or below the 26–47° reported in the literature for TEMPO-oxidized CNMs. Newly discovered OTO-CNM Form II shows enhanced hydrophilic properties as well as unique crystallinity and chemical functionalization in the field of bio-sourced material and nanocomposites.
Collapse
Affiliation(s)
- John P Moore II
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Soma Shekar Dachavaram
- Department of Pharmaceutical Sciences College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.S.D.); (S.B.); (N.R.P.); (P.A.C.)
| | - Shobanbabu Bommagani
- Department of Pharmaceutical Sciences College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.S.D.); (S.B.); (N.R.P.); (P.A.C.)
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.S.D.); (S.B.); (N.R.P.); (P.A.C.)
| | - Priya Venkatraman
- Material Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA; (P.V.); (E.J.F.)
| | - E. Johan Foster
- Material Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA; (P.V.); (E.J.F.)
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.S.D.); (S.B.); (N.R.P.); (P.A.C.)
| | - Jamie A. Hestekin
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
- Correspondence: ; Tel.: +1-479-283-1038
| |
Collapse
|