1
|
Yang P, Wu Q, Liu H, Zhou S, Chen W, Zhong H, Zhang K, Zou F, Ying H. Simulation and mechanism for the Ultrasound-Assisted Oiling-Out Process: A case study using Fructose-1,6-diphosphate. ULTRASONICS SONOCHEMISTRY 2024; 108:106953. [PMID: 38879963 PMCID: PMC11228588 DOI: 10.1016/j.ultsonch.2024.106953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Liquid-liquid separation, commonly referred to as oiling-out, frequently can occurs during crystallization, especially the anti-solvent crystallization process of phosphoryl compounds, and poses potential hurdle for high-quality product. Efficiently regulating oiling-out during crystallization remains a significant challenge. Among various techniques, ultrasound emerges as a green and effective approach to enhance the crystallization process. However, there is a dearth of in-depth research exploring the microscopic mechanisms of this process. Therefore, our research focused on the fructose-1,6-diphosphate (FDP), a typical phosphoryl compound, to gain a deeper understanding of how ultrasound influences the oiling-out process. The focused beam reflectance measurement (FBRM) technology was used to investigate the oiling-out phenomenon of FDPNa3 across various solvent ratios. In addition, the influence of ultrasound on the induction time was studied and the nucleation energy barrier was calculated. Finally, to further unravel the microscopic mechanisms, we utilized molecular simulation techniques to analyze the impact of ultrasound power on the dissolution-precipitation process. Our observations revealed a consistent oiling-out process that attainted a stable state regardless of the solvent employed. Notably, the results of the oiling-out induction time experiments indicated that ultrasound significantly reduced helped lower the nucleation energy barrier of FDP3- ions, thereby dismantling FDP3-clusters in solution. Thus, in turn, shortened the reduced induction time and promoted crystallization. Furthermore, ultrasound reduced the interactions between FDP3-ions and water molecules as well as FDP3- ions themselves. As simulated field intensity increased, these interaction forces gradually diminished, the thickness of the hydration layer surrounding the FDP3- clusters facilitating the disruption of clusters, ultimately enhancing the crystallization process.
Collapse
Affiliation(s)
- Pengpeng Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haodong Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuyang Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wensu Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huamei Zhong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Keke Zhang
- Biology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Fengxia Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Gong W, Li P, Rohani S. Spherical Crystallization Based on Liquid-Liquid Phase Separation in a Reverse Antisolvent Crystallization Process. J Pharm Sci 2024; 113:1616-1623. [PMID: 38311170 DOI: 10.1016/j.xphs.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Vanillin crystals undergo needle-like morphology that results in poor flowability, crystal breakage, and low packing density. The spherical crystallization technology can produce particles with improved flowability and stability. A reverse antisolvent crystallization based on liquid-liquid phase separation is proposed in this work to produce vanillin spherical agglomerates. Hansen Solubility Parameters are applied to explain the liquid-liquid phase separation (LLPS) phenomenon. The Pixact Crystallization Monitoring system is applied to in-situ monitor the whole process. A six-step spherical crystallization mechanism is revealed based on the recorded photos, including the generation of oil droplets, nucleation inside oil droplets, the coalescence and split of oil droplets, crystal growth and agglomeration, breakage of oil droplets, and attrition of agglomerates. Different working conditions are tested to explore the best operation parameters and a frequency-conversion stirring strategy is proposed to improve the production of spherical crystals.
Collapse
Affiliation(s)
- Weizhong Gong
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada; Department of Process Development, Wanhua Chemical Group Co., Ltd, Yantai, Shandong, 264006, China
| | - Pan Li
- Department of Process Development, Wanhua Chemical Group Co., Ltd, Yantai, Shandong, 264006, China
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada.
| |
Collapse
|
3
|
Sethi V, Cohen-Gerassi D, Meir S, Ney M, Shmidov Y, Koren G, Adler-Abramovich L, Chilkoti A, Beck R. Modulating hierarchical self-assembly in thermoresponsive intrinsically disordered proteins through high-temperature incubation time. Sci Rep 2023; 13:21688. [PMID: 38066072 PMCID: PMC10709347 DOI: 10.1038/s41598-023-48483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.
Collapse
Affiliation(s)
- Vaishali Sethi
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Dana Cohen-Gerassi
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sagi Meir
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Max Ney
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Gil Koren
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Lihi Adler-Abramovich
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Roy Beck
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel.
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
4
|
Dhondale MR, Nambiar AG, Singh M, Mali AR, Agrawal AK, Shastri NR, Kumar P, Kumar D. Current Trends in API Co-Processing: Spherical Crystallization and Co-Precipitation Techniques. J Pharm Sci 2023; 112:2010-2028. [PMID: 36780986 DOI: 10.1016/j.xphs.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Active Pharmaceutical Ingredients (APIs) do not always exhibit processable physical properties, which makes their processing in an industrial setup very demanding. These issues often lead to poor robustness and higher cost of the drug product. The issue can be mitigated by co-processing the APIs using suitable solvent media-based techniques to streamline pharmaceutical manufacturing operations. Some of the co-processing methods are the amalgamation of API purification and granulation steps. These techniques also exhibit adequate robustness for successful adoption by the pharmaceutical industry to manufacture high quality drug products. Spherical crystallization and co-precipitation are solvent media-based co-processing approaches that enhances the micromeritic and dissolution characteristics of problematic APIs. These methods not only improve API characteristics but also enable direct compression into tablets. These methods are economical and time-saving as they have the potential for effectively circumventing the granulation step, which can be a major source of variability in the product. This review highlights the recent advancements pertaining to these techniques to aid researchers in adopting the right co-processing method. Similarly, the possibility of scaling up the production of co-processed APIs by these techniques is discussed. The continuous manufacturability by co-processing is outlined with a short note on Process Analytical Technology (PAT) applicability in monitoring and improving the process.
Collapse
Affiliation(s)
- Madhukiran R Dhondale
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Amritha G Nambiar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishek R Mali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ashish K Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nalini R Shastri
- Consultant, Solid State Pharmaceutical Research, Hyderabad 500037, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
5
|
Hu X, Zhao Y, Xiao W, He G, Jiang H, Ruan X, Jiang X. Improved Spherical Particle Preparation of Ceftriaxone Sodium via Membrane-Assisted Spherical Crystallization. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yiting Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, China
| | - Hanyu Jiang
- Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Xuehua Ruan
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
6
|
Liu Y, Wang S, Li J, Guo S, Yan H, Li K, Tong L, Gao Y, Li T, Chen M, Gao Z, Gong J. Preparation of ethyl vanillin spherical particles with functions of sustained release and anti-caking by an organic solvent-free process. Food Chem 2023; 402:134518. [DOI: 10.1016/j.foodchem.2022.134518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
|
7
|
Simone E, Beveridge G, Sillers P, Webb J, George N, Hone J. Analysis of the Dissolution and Crystallization of Partly Immiscible Ternary Mixtures Using a Composite Sensor Array of In Situ ATR-FTIR, Laser Backscattering, and Imaging. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elena Simone
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, United Kingdom
| | - Gillian Beveridge
- Syngenta Grangemouth Manufacturing Centre, Grangemouth FK3 8XG, United Kingdom
| | - Pauline Sillers
- Syngenta Grangemouth Manufacturing Centre, Grangemouth FK3 8XG, United Kingdom
| | - Jennifer Webb
- Syngenta Jealott’s Hill International Research Centre, Warfield, Bracknell RG42 6EY, United Kingdom
| | - Neil George
- Syngenta Jealott’s Hill International Research Centre, Warfield, Bracknell RG42 6EY, United Kingdom
- School of Chemical and Process Engineering, University of Leeds, Leeds LS29JT, United Kingdom
| | - John Hone
- Syngenta Jealott’s Hill International Research Centre, Warfield, Bracknell RG42 6EY, United Kingdom
| |
Collapse
|
8
|
Chen CW, Lee HL, Yeh KL, Lee T. Effects of Scale-Up and Impeller Types on Spherical Agglomeration of Dimethyl Fumarate. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chih Wei Chen
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan, R. O. C
| | - Hung Lin Lee
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan, R. O. C
| | - Kuan Lin Yeh
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan, R. O. C
| | - Tu Lee
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan, R. O. C
| |
Collapse
|
9
|
Li W, Yang J, Du S, Macaringue E, Wang Y, Wu S, Gong J. Preparation and Formation Mechanism of l-Valine Spherulites via Evaporation Crystallization. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Jing Yang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Shichao Du
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Estevao Macaringue
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Yan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| |
Collapse
|
10
|
Zhang Z, Wang L, Zhao P, Xiao Y, Hao H, Bao Y. Comparison Study of KBH 4 Spherical Agglomerates Prepared in Different Antisolvents: Mechanisms and Properties. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhengdong Zhang
- School of Chemical Engineering and Technology and State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Liping Wang
- School of Chemical Engineering and Technology and State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Pei Zhao
- School of Chemical Engineering and Technology and State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Yuntian Xiao
- School of Chemical Engineering and Technology and State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Hongxun Hao
- School of Chemical Engineering and Technology and State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| | - Ying Bao
- School of Chemical Engineering and Technology and State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
| |
Collapse
|
11
|
Martins MAR, Silva LP, Jorge PS, Abranches DO, Pinho SP, Coutinho JAP. The role of ionic vs. non-ionic excipients in APIs-based eutectic systems. Eur J Pharm Sci 2021; 156:105583. [PMID: 33045368 DOI: 10.1016/j.ejps.2020.105583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
Aiming to contribute to drug pre-formulation, new eutectic mixtures were developed. Thymol, coumarin, or quaternary ammonium chlorides as excipients, were combined with the active pharmaceutical ingredients (APIs) acetylsalicylic acid, acetaminophen, ibuprofen, ketoprofen, or lidocaine. Their solid-liquid equilibrium (SLE) binary phase diagrams were measured to study eventual phase separation between the compounds, preventing manufacturing problems, and to study the molecular interactions between the APIs and ionic or non-ionic excipients. The Conductor-like Screening Model for Real Solvents (COSMO-RS) capability to predict the SLE of mixtures containing non-ionic excipients was further evaluated. COSMO-RS gives a good quantitative description of the experimental SLE being a tool with great potential in the screening of eutectic systems containing APIs and non-ionic excipients. While thymol presents strong interactions with the APIs, and consequently negative deviations to thermodynamic ideality, systems containing coumarin follow a quasi-ideal behavior. Regarding the ionic excipients, both choline chloride and the tetraalkylammonium chlorides are unable to establish relevant interactions with the APIs, and no significant negative deviations to ideality are observed. The liquefaction of the APIs here studied is favored by using non-ionic excipients, such as thymol, due to the strong interactions it can establish with the APIs.
Collapse
Affiliation(s)
- Mónia A R Martins
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Liliana P Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patrícia S Jorge
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dinis O Abranches
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Simão P Pinho
- Mountain Research Center - CIMO, Polytechnic Institute of Bragança, 5301-855 Bragança, Portugal
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|