Zhang H, Wei Z, Xiong D, Wu Y, Tong M, Su H, Zhang Z, Liao J. Investigation into the Structure and Properties of Biochar Co-Activated by ZnCl
2 and NaHCO
3 under Low Temperature Conditions.
MATERIALS (BASEL, SWITZERLAND) 2024;
17:942. [PMID:
38399191 PMCID:
PMC10890275 DOI:
10.3390/ma17040942]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Using sodium lignosulfonate as feedstock, ZnCl2 and NaHCO3 co-activated the hierarchical porous carbons (HPCs) were prepared by one-pot pyrolysis with different NaHCO3 dosages (0-4 g) and carbonization temperatures (400-600 °C). Subsequently, phosphotungstate (HPW) was supported with the resulting biochar for the α-pinene hydration reaction to produce α-terpineol. The optimum preparation conditions were determined according to the yield of α-terpineol. The formation mechanism and physicochemical properties of HPCs were analyzed through TG, SEM, XPS, XRD, FT-IR, and N2 adsorption-desorption isotherms. The results demonstrated that NaHCO3 underwent a two-step reaction which liberated a substantial quantity of CO2, thereby enhancing activated carbon's macroporous and mesoporous structures. Simultaneously, NaHCO3 mitigated strong acid gas (HCl) emissions during ZnCl2 activation. Compared with AC450-4:8:0 prepared by ZnCl2 activation alone, the total pore volume of AC450-4:8:2 prepared by co-activation is increased from 0.595 mL/g to 0.754 mL/g and the mesopore rate from 47.7% to 77.8%, which is conducive to reducing the steric hindrance of the hydration reaction and improving the selectivity. Hydration experiments show that the selectivity of α-terpineol is 55.7% under HPW/AC450-4:8:2 catalysis, higher than 31.0% for HPW and 47.4% for HPW/AC450-4:8:0.
Collapse