1
|
Rasitha TP, Krishna NG, Anandkumar B, Vanithakumari SC, Philip J. A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives. Adv Colloid Interface Sci 2024; 324:103090. [PMID: 38290251 DOI: 10.1016/j.cis.2024.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Superhydrophobicity (SHP) is an incredible phenomenon of extreme water repellency of surfaces ubiquitous in nature (E.g. lotus leaves, butterfly wings, taro leaves, mosquito eyes, water-strider legs, etc). Historically, surface exhibiting water contact angle (WCA) > 150° and contact angle hysteresis <10° is considered as SHP. The SHP surfaces garnered considerable attention in recent years due to their applications in anti-corrosion, anti-fouling, self-cleaning, oil-water separation, viscous drag reduction, anti-icing, etc. As corrosion and marine biofouling are global problems, there has been focused efforts in combating these issues using innovative environmentally friendly coatings designs taking cues from natural SHP surfaces. Over the last two decades, though significant progress has been made on the fabrication of various SHP surfaces, the practical adaptation of these surfaces for various applications is hampered, mainly because of the high cost, non-scalability, lack of simplicity, non-adaptability for a wide range of substrates, poor mechanical robustness and chemical inertness. Despite the extensive research, the exact mechanism of corrosion/anti-fouling of such coatings also remains elusive. The current focus of research in recent years has been on the development of facile, eco-friendly, cost-effective, mechanically robust chemically inert, and scalable methods to prepare durable SHP coating on a variety of surfaces. Although there are some general reviews on SHP surfaces, there is no comprehensive review focusing on SHP on metallic and alloy surfaces with corrosion-resistant and antifouling properties. This review is aimed at filling this gap. This review provides a pedagogical description with the necessary background, key concepts, genesis, classical models of superhydrophobicity, rational design of SHP, coatings characterization, testing approaches, mechanisms, and novel fabrication approaches currently being explored for anticorrosion and antifouling, both from a fundamental and practical perspective. The review also provides a summary of important experimental studies with key findings, and detailed descriptions of the evaluation of surface morphologies, chemical properties, mechanical, chemical, corrosion, and antifouling properties. The recent developments in the fabrication of SHP -Cr-Mo steel, Ti, and Al are presented, along with the latest understanding of the mechanism of anticorrosion and antifouling properties of the coating also discussed. In addition, different promising applications of SHP surfaces in diverse disciplines are discussed. The last part of the review highlights the challenges and future directions. The review is an ideal material for researchers practicing in the field of coatings and also serves as an excellent reference for freshers who intend to begin research on this topic.
Collapse
Affiliation(s)
- T P Rasitha
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - Nanda Gopala Krishna
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - B Anandkumar
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - S C Vanithakumari
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - John Philip
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India.
| |
Collapse
|
2
|
Wang J, Pu X, Zhang L. Durably dual superlyophobic cationic guar gum‑calcium complex decorated cellulose fabrics for on-demand oil/water separation. Int J Biol Macromol 2023; 248:125979. [PMID: 37499716 DOI: 10.1016/j.ijbiomac.2023.125979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The removal to oils from water has become a global issue because of the growing of wastewater discharge and unceasing appearance of oil leaks. Herein, a kind of durably dual superlyophobic (superhydrophobic under oil and superoleophobic under water) cotton fabric (CF) was fabricated via simple assembly route that introduced guar hydroxypropyltrimonium chloride‑calcium (GHTC-Ca) chelate compound on the fabric surface. The coated CF exhibits good resistance to mechanical abrasion, corrosive aqueous solution, high temperature, and organic solvent immersion. Furthermore, due to prewetting-caused superoleophobicity underwater and superhydrophobicity underoil, the as-prepared CF can selectively separate both heavy oils and light oils in water under extremely harsh conditions with separation efficiencies as high as 98.7 % and 98.4 %, respectively. More importantly, the as-prepared fabrics are able to remove dispersed oil droplets from oil-in-water emulsions and water droplets from water-in-oil emulsions with separation efficiency of over 89 % and 91.4 %, respectively. Hence, this prominent separation performance suggests a good application prospect of GHTC-Ca functionalized CF in oily water purification.
Collapse
Affiliation(s)
- Jintao Wang
- School of Chemistry and Chemical Engineering, Ankang Research Centre of New Nano-materials Science and Technology, Ankang University, Ankang 725000, PR China; College of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Xiaolong Pu
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang 725000, PR China
| | - Lei Zhang
- School of Education, Ankang University, Ankang 725000, PR China
| |
Collapse
|
3
|
Saulat H, Yang J, Yan T, Raza W, Song W, He G. W-MEL zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Qiao Y, Xiao Y, Yang S, Zhao Q, Zhao W, He G. Suppressing the Competitive Effect of Water Vapor on CO Adsorption over 5A Molecular Sieves via Silanization Hydrophobic Modification. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yu Qiao
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang111003, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin124221, China
| | - Yonghou Xiao
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang111003, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin124221, China
| | - Shuohan Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin124221, China
| | - Qidong Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin124221, China
| | - Wenkai Zhao
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang111003, China
| | - Gaohong He
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin124221, China
| |
Collapse
|
5
|
Mao C, Yin K, Yang C, Dong G, Tian G, Zhang Y, Zhou Y. Fe-based MOFs@Pd@COFs with spatial confinement effect and electron transfer synergy of highly dispersed Pd nanoparticles for Suzuki-Miyaura coupling reaction. J Colloid Interface Sci 2022; 608:809-819. [PMID: 34785458 DOI: 10.1016/j.jcis.2021.10.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
Controlling the spatial confinement effect and highly dispersed Pd nanoparticles (NPs) can help to improve applicability in catalysis, energy conversion, and separation. However, the nonspatial confinement effect, agglomeration of Pd NPs of catalyst and harsh reaction conditions have become the urgent problems to be solved in Suzuki-Miyaura cross-coupling reaction. Herein, we report the first application of a new MOFs@COFs by using core with metal organic frameworks (MOFs) NH2-MIL-101(Fe) and shell with covalent organic frameworks (COFs) for loading Pd NPs. The quickly formation of a transition state, the highly dispersed Pd NPs and the advancedly spatial confinement effect were achieved by coupling Fe base synergistic active components, electron-oriented anchoring with controlling pore scale, respectively. Most notably, as a proof-of-concept application, the high catalytic activity of NH2-MIL-101(Fe)@Pd@COFs(3 + 3) in catalysis is elucidated for Suzuki-Miyaura coupling reaction by the broad scope of the reactants and the preeminent yields of the products, together with excellent stability and recoverability. With this strategy, the mechanism of Suzuki-Miyaura coupling reaction was verified by examining the catalytic activity. We hope that our approach can further facilitate the study of the design and use of functional MOFs@Pd@COFs materials.
Collapse
Affiliation(s)
- Chunfeng Mao
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, PR China
| | - Kai Yin
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, PR China; Shangyu Economic and Technological Development Zone, Zhejiang Nanjiao Chemistry Co., Ltd., Shangyu 312369, China
| | - Chenghan Yang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, PR China
| | - Guomeng Dong
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, PR China
| | - Guokai Tian
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, PR China
| | - Yiwei Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, PR China.
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, PR China.
| |
Collapse
|
6
|
Kang L, Zeng Q, Shi L, Zhou X, Wang M, Wan S, Song L, Liao B, Guo X. Fabrication of superhydrophobic nano-soil coated surfaces for oil/water separation and metal corrosion protection. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Fabrication of a superhydrophobic fabric with a uniform hierarchical structure via a bottom-blown stirring method for highly efficient oil–water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118063] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Zhang N, Qi Y, Zhang Y, Luo J, Cui P, Jiang W. A Review on Oil/Water Mixture Separation Material. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02524] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yunfei Qi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yana Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Jialiang Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Wei Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| |
Collapse
|