1
|
Zhu G, Ren B, Zhou Q, Xiong J, Ma X, Zhao L, Jiang F, Yang X, Wang S. Outstanding Performance of the Deep Eutectic Solvent-Based Aqueous Biphasic System Constructed with Sodium Citrate for a Green Gold Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37366178 DOI: 10.1021/acs.langmuir.3c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Aqueous biphasic systems (ABSs) that are based on deep eutectic solvents (DESs) are environmentally benign systems to use for metal ion separation. In this work, a series of DESs was synthesized for the first time with PEG 400 as hydrogen bond donors and tetrabutylphonium bromide (P4Br), tetrabutylammonium bromide (N4Br), or tetrabutylammonium chloride (N4Cl) as hydrogen bond acceptors, and then they were combined with citrate (Na3C6H5O7), which is eco-friendly, to construct an ABS for use in the separation of Au(I) from an aurocyanide solution. Phase diagrams of DESs + Na3C6H5O7 + H2O systems were constructed using the experimentally measured data. Multiple factors that affect the efficiency of the gold extraction were studied; these factors were the species of salt or DES and their content, the equilibrium pH, the oscillation time, and the initial gold concentration. Gold(I) is preferentially retained in the DES-rich phase, and the P4Br:PEG 1:2 + Na3C6H5O7 + H2O system has a high extraction efficiency of 100.0% under optimized conditions. FT-IR, NMR, and TEM characterizations and DFT calculations show that the migration of Au(I) from the salt-rich to the DES-rich phase follows an ion exchange mechanism. Specifically, Au(CN)2- replaces Br- in the original P4Br and generates a stable ion pair with the quaternary phosphonium salt cation, P+, and this replacement is driven by electrostatic attractions. A new strong hydrogen bond network simultaneously forms between the anionic Au(CN)2- and the -OH group in the PEG 400 component. Finally, the gold of Au(I)-loaded P4Br:PEG 1:2 can be successfully reduced by sodium borohydride with an efficiency of 100.0%. The strategy to extract gold(I) from alkaline cyanide solutions using an ABS based on DESs as proposed in this work provides a potential platform for developing green technology for recovering gold.
Collapse
Affiliation(s)
- Guiping Zhu
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Boxian Ren
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Qiaoshu Zhou
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Jiaxing Xiong
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiaoyu Ma
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Lingling Zhao
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Fengzhi Jiang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiangjun Yang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Shixiong Wang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|