Hori H, Okamura K, Suzuki K, Biermann M. Efficient Mineralization of Lithium Bis(pentafluoroethanesulfonyl)imide and Related Electrolyte Fluorochemicals Using Superheated Water.
ACS OMEGA 2024;
9:22398-22409. [PMID:
38799364 PMCID:
PMC11112716 DOI:
10.1021/acsomega.4c02097]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Lithium bis(pentafluoroethanesulfonyl)imide, Li[N(SO2C2F5)2], a typical fluorochemical aimed at better electrochemical performance of battery electrolytes, in superheated water was studied for its waste treatment. When Li[N(SO2C2F5)2] was reacted in pure superheated water at 300 °C, little F- ions were produced. In contrast, complete mineralization of the fluorine, sulfur, and nitrogen atoms in Li[N(SO2C2F5)2] was achieved when the reaction was performed in the presence of KMnO4. Specifically, when Li[N(SO2C2F5)2] was treated for 18 h with 158 mM of KMnO4, the F- and SO42- yields were 101 and 99%, respectively, and the sum of the NO3- and NO2- yields was 101%. In the gas phase, trace CO2 was detected and no CHF3, which has high global warming potential, was formed. Furthermore, the fluorine, sulfur, and nitrogen atoms in the analogues K[N(SO2C4F9)2] and K[N(SO2CF2)2CF2] also underwent complete mineralization using the same approach.
Collapse