1
|
Zhang P, Chen X, Wang Y, Peng W, Ren Z, Li Y, He Y, Chu B. Realizing of ZSM-5 microspheres with enhanced catalytic properties prepared from iron ore tailings via solid-phase conversion method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27983-2. [PMID: 37266784 DOI: 10.1007/s11356-023-27983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
The comprehensive utilization of iron ore tailings (IOTs) not only resolved environmental problems but also brought huge economic benefits. In this study, the synthetic route presented herein provides a novel method for the synthesis of ZSM-5 microspheres from IOTs. The effects of Si/Al molar ratios and the pH of the precursor solution on the formation of zeolite was evaluated by various analytical methods. The catalytic performance of the catalyst prepared by the solid-phase conversion method (denoted as MP-ZSM-5) was evaluated by methanol-to-propylene (MTP) reaction. Compared with the zeolite catalyst that synthesized via the conventional hydrothermal method (denoted as HM-ZSM-5), MP-ZSM-5 not only prolongs catalytic lifetime from 18.7 to 36.0 h but also has higher selectivity for propylene by MP-ZSM-5 (43.7%) than that for HM-ZSM-5 (38.6%). In addition, Kissinger-Akahira-Sunose (KAS) model is applied to the TG result to study the template removal process kinetics. The average activation energy values required for the removal of CTAB and TPABr are 201.11 ± 13.42 and 326.88 ± 16.91 kJ∙mol-1, respectively. Furthermore, this result is well coupled with the model-free kinetic algorithms to determine the conversion and isoconversion of the TPABr and CTAB decomposition in ZSM-5, which serves as important guidelines for the industrial production process.
Collapse
Affiliation(s)
- Peng Zhang
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, No. 66 Waliu Road, Wanbailin District, Taiyuan, Shanxi, 030024, China
| | - Xingyue Chen
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, No. 66 Waliu Road, Wanbailin District, Taiyuan, Shanxi, 030024, China
| | - Yang Wang
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, No. 66 Waliu Road, Wanbailin District, Taiyuan, Shanxi, 030024, China
| | - Wei Peng
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, No. 66 Waliu Road, Wanbailin District, Taiyuan, Shanxi, 030024, China
| | - Zhifeng Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, No. 66 Waliu Road, Wanbailin District, Taiyuan, Shanxi, 030024, China
| | - Yihong Li
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, No. 66 Waliu Road, Wanbailin District, Taiyuan, Shanxi, 030024, China.
| | - Yibo He
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, No. 66 Waliu Road, Wanbailin District, Taiyuan, Shanxi, 030024, China
| | - Baoshuai Chu
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, No. 66 Waliu Road, Wanbailin District, Taiyuan, Shanxi, 030024, China
| |
Collapse
|
2
|
Kennes K, Kubarev A, Demaret C, Treps L, Delpoux O, Rivallan M, Guillon E, Méthivier A, de Bruin T, Gomez A, Harbuzaru B, Roeffaers MB, Chizallet C. Multiscale Visualization and Quantification of the Effect of Binders on the Acidity of Shaped Zeolites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koen Kennes
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- IFP Energies nouvelles, Rond-Point de L’Echangeur de Solaize, BP 3 69360 Solaize, France
| | - Alexey Kubarev
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Coralie Demaret
- IFP Energies nouvelles, Rond-Point de L’Echangeur de Solaize, BP 3 69360 Solaize, France
| | - Laureline Treps
- IFP Energies nouvelles, Rond-Point de L’Echangeur de Solaize, BP 3 69360 Solaize, France
| | - Olivier Delpoux
- IFP Energies nouvelles, Rond-Point de L’Echangeur de Solaize, BP 3 69360 Solaize, France
| | - Mickael Rivallan
- IFP Energies nouvelles, Rond-Point de L’Echangeur de Solaize, BP 3 69360 Solaize, France
| | - Emmanuelle Guillon
- IFP Energies nouvelles, Rond-Point de L’Echangeur de Solaize, BP 3 69360 Solaize, France
| | - Alain Méthivier
- IFP Energies nouvelles, Rond-Point de L’Echangeur de Solaize, BP 3 69360 Solaize, France
| | - Theodorus de Bruin
- IFP Energies nouvelles, 1 et 4 Avenue de Bois-Préau, BP3, 92852 Rueil-Malmaison, France
| | - Axel Gomez
- IFP Energies nouvelles, Rond-Point de L’Echangeur de Solaize, BP 3 69360 Solaize, France
- Département de Chimie, École Normale Supérieure, PSL University, 75005 Paris, France
| | - Bogdan Harbuzaru
- IFP Energies nouvelles, Rond-Point de L’Echangeur de Solaize, BP 3 69360 Solaize, France
| | - Maarten B.J. Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Céline Chizallet
- IFP Energies nouvelles, Rond-Point de L’Echangeur de Solaize, BP 3 69360 Solaize, France
| |
Collapse
|
3
|
Gao J, Zhou H, Zhang F, Ji K, Liu P, Liu Z, Zhang K. Effect of Preparation Method on the Catalytic Performance of HZSM-5 Zeolite Catalysts in the MTH Reaction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2206. [PMID: 35329658 PMCID: PMC8955016 DOI: 10.3390/ma15062206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022]
Abstract
A kind of nano-ZSM-5 zeolite crystal was synthesized by the hydrothermal method, and HZSM-5 zeolite powder was obtained via acid exchange. By using pseudoboehmite as a binder, a series of HZSM-5 zeolite catalysts for methanol-to-hydrocarbons (MTH) were prepared through adjusting the binder content between 20 and 50% in addition to the molding method of wet extrusion and mechanical mixing. XRD, 27Al NMR, SEM-EDS, ICP, low-temperature N2 adsorption and desorption, NH3-TPD, Py-FTIR, FT-IR, TG and elemental analyses were used to characterize the properties of fresh catalysts and coke-deposited catalysts. Then, MTH catalytic performance was evaluated in a continuous-flow fixed-bed reactor. The characterization and evaluation results showed that the addition of dilute nitric acid during the molding process increased the amount of moderate-strength acid and formed a hierarchical pore distribution, which helped to reduce the reaction ability of cracking, aromatization and hydrogen transfer, improve the diffusion properties of the catalyst and slow down the coke deposition rate. The catalyst with a binder content of 30% made by wet extrusion with dilute nitric acid had the best performance, whose activity stability of MTH increased by 96 h, higher than other catalysts, and the coke deposition rate was slower, which was due to the most suitable distribution of acid strength and B/L ratio as well as the most obvious hierarchical pore structure.
Collapse
Affiliation(s)
- Junhua Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; (J.G.); (H.Z.); (F.Z.); (Z.L.)
| | - Hao Zhou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; (J.G.); (H.Z.); (F.Z.); (Z.L.)
| | - Fucan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; (J.G.); (H.Z.); (F.Z.); (Z.L.)
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Keming Ji
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; (J.G.); (H.Z.); (F.Z.); (Z.L.)
| | - Ping Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; (J.G.); (H.Z.); (F.Z.); (Z.L.)
| | - Zenghou Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; (J.G.); (H.Z.); (F.Z.); (Z.L.)
| | - Kan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; (J.G.); (H.Z.); (F.Z.); (Z.L.)
| |
Collapse
|
4
|
Zhou Z, Jiang R, Chen X, Wang X, Hou H. One-step synthesis of hierarchical lamellar H-ZSM-5 zeolite and catalytic performance of methanol to olefin. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Wang J, Liu C, Zhu P, Liu H, Zhang X, Zhang Y, Liu J, Zhang L, Zhang W. Synthesis of hierarchical ZSM-5 nano-aggregated microspheres for application in enhancing the stability of n-hexane aromatization. NEW J CHEM 2021. [DOI: 10.1039/d1nj03077a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hierarchical ZSM-5 nano-aggregated microspheres were directly synthesized without any mesoporous templates and exhibited improved catalytic stability in n-hexane aromatization.
Collapse
Affiliation(s)
- Jinshan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Cun Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Peng Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Haiou Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiongfu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuan Zhang
- Shaanxi Yanchang Petroleum (Group) Co., Ltd. Dalian Institute of Chemical Physics Xi’an Clean Energy (Chemical) Research Institute, Xi’an 710065, China
| | - Junxia Liu
- Shaanxi Yanchang Petroleum (Group) Co., Ltd. Dalian Institute of Chemical Physics Xi’an Clean Energy (Chemical) Research Institute, Xi’an 710065, China
| | - Liang Zhang
- Shaanxi Yanchang Petroleum (Group) Co., Ltd. Dalian Institute of Chemical Physics Xi’an Clean Energy (Chemical) Research Institute, Xi’an 710065, China
| | - Wei Zhang
- Shaanxi Yanchang Petroleum (Group) Co., Ltd. Dalian Institute of Chemical Physics Xi’an Clean Energy (Chemical) Research Institute, Xi’an 710065, China
| |
Collapse
|