1
|
Dávid A, Morát J, Chen M, Gao F, Fahlman M, Liu X. Mapping Uncharted Lead-Free Halide Perovskites and Related Low-Dimensional Structures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:491. [PMID: 38276430 PMCID: PMC10819976 DOI: 10.3390/ma17020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Research on perovskites has grown exponentially in the past decade due to the potential of methyl ammonium lead iodide in photovoltaics. Although these devices have achieved remarkable and competitive power conversion efficiency, concerns have been raised regarding the toxicity of lead and its impact on scaling up the technology. Eliminating lead while conserving the performance of photovoltaic devices is a great challenge. To achieve this goal, the research has been expanded to thousands of compounds with similar or loosely related crystal structures and compositions. Some materials are "re-discovered", and some are yet unexplored, but predictions suggest that their potential applications may go beyond photovoltaics, for example, spintronics, photodetection, photocatalysis, and many other areas. This short review aims to present the classification, some current mapping strategies, and advances of lead-free halide double perovskites, their derivatives, lead-free perovskitoid, and low-dimensional related crystals.
Collapse
Affiliation(s)
- Anna Dávid
- Laboratory of Organic Electronics (LOE), Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden;
| | - Julia Morát
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden; (J.M.); (M.C.); (F.G.)
| | - Mengyun Chen
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden; (J.M.); (M.C.); (F.G.)
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden; (J.M.); (M.C.); (F.G.)
| | - Mats Fahlman
- Laboratory of Organic Electronics (LOE), Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden;
| | - Xianjie Liu
- Laboratory of Organic Electronics (LOE), Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden;
| |
Collapse
|
2
|
Liu Y, Liang J, Deng Z, Guo S, Ji X, Chen C, Canepa P, Lü X, Mao L. 0D Pyramid-intercalated 2D Bimetallic Halides with Tunable Electronic Structures and Enhanced Emission under Pressure. Angew Chem Int Ed Engl 2023; 62:e202314977. [PMID: 37991471 DOI: 10.1002/anie.202314977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 11/23/2023]
Abstract
Hybrid metal halides are emerging semiconductors as promising candidates for optoelectronics. The pursuit of hybridizing various dimensions of metal halides remains a desirable yet highly complex endeavor. By utilizing dimension engineering, a diverse array of new materials with intrinsically different electronic and optical properties has been developed. Here, we report a new family of 2D-0D hybrid bimetallic halides, (C6 N2 H14 )2 SbCdCl9 ⋅ 2H2 O (SbCd) and (C6 N2 H14 )2 SbCuCl9 ⋅ 2H2 O (SbCu). These compounds adopt a new layered structure, consisting of alternating 0D square pyramidal [SbCl5 ] and 2D inorganic layers sandwiched by organic layers. SbCd and SbCu have optical band gaps of 3.3 and 2.3 eV, respectively. These compounds exhibit weak photoluminescence (PL) at room temperature, and the PL gradually enhances with decreasing temperature. Density functional theory (DFT) calculations reveal that SbCd and SbCu are direct gap semiconductors, where first-principles band gaps follow the experimental trend. Moreover, given the different pressure responses of 0D and 2D components, these materials exhibit highly tunable electronic structures during compression, where a remarkable 11 times enhancement in PL emission is observed for SbCd at 19 GPa. This work opens new avenues for designing new layered bimetallic halides and further manipulating their structures and optoelectronic properties via pressure.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, SUSTech Energy Institute for Carbon Neutrality, Southern, University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jiayuan Liang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Zeyu Deng
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Xiaoqin Ji
- Department of Chemistry, SUSTech Energy Institute for Carbon Neutrality, Southern, University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Congcong Chen
- Department of Chemistry, SUSTech Energy Institute for Carbon Neutrality, Southern, University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Pieremanuele Canepa
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 10-01 CREATE Tower, Singapore, 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Department of Electrical and Computer Engineering, and Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Lingling Mao
- Department of Chemistry, SUSTech Energy Institute for Carbon Neutrality, Southern, University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
3
|
Connor BA, Su AC, Slavney AH, Leppert L, Karunadasa HI. Understanding the evolution of double perovskite band structure upon dimensional reduction. Chem Sci 2023; 14:11858-11871. [PMID: 37920347 PMCID: PMC10619643 DOI: 10.1039/d3sc03105e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/10/2023] [Indexed: 11/04/2023] Open
Abstract
Recent investigations into the effects of dimensional reduction on halide double perovskites have revealed an intriguing change in band structure when the three-dimensional (3D) perovskite is reduced to a two-dimensional (2D) perovskite with inorganic sheets of monolayer thickness (n = 1). The indirect bandgap of 3D Cs2AgBiBr6 becomes direct in the n = 1 perovskite whereas the direct bandgap of 3D Cs2AgTlBr6 becomes indirect at the n = 1 limit. Here, we apply a linear combination of atomic orbitals approach to uncover the orbital basis for this bandgap symmetry transition with dimensional reduction. We adapt our previously established method for predicting band structures of 3D double perovskites for application to their 2D congeners, emphasizing new considerations required for the 2D lattice. In particular, we consider the inequivalence of the terminal and bridging halides and the consequences of applying translational symmetry only along two dimensions. The valence and conduction bands of the layered perovskites can be derived from symmetry adapted linear combinations of halide p orbitals propagated across the 2D lattice. The dispersion of each band is then determined by the bonding and antibonding interactions of the metal and halide orbitals, thus affording predictions of the essential features of the band structure. We demonstrate this analysis for 2D Ag-Bi and Ag-Tl perovskites with sheets of mono- and bilayer thickness, establishing a detailed understanding of their band structures, which enables us to identify the key factors that drive the bandgap symmetry transitions observed at the n = 1 limit. Importantly, these insights also allow us to make the general prediction that direct → indirect or indirect → direct bandgap transitions in the monolayer limit are most likely in double perovskite compositions that involve participation of metal d orbitals at the band edges or that have no metal-orbital contributions to the valence band, laying the groundwork for the targeted realization of this phenomenon.
Collapse
Affiliation(s)
- Bridget A Connor
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Alexander C Su
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Adam H Slavney
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Linn Leppert
- MESA+ Institute for Nanotechnology, University of Twente 7500 AE Enschede The Netherlands
| | - Hemamala I Karunadasa
- Department of Chemistry, Stanford University Stanford CA 94305 USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| |
Collapse
|
4
|
Metcalf I, Sidhik S, Zhang H, Agrawal A, Persaud J, Hou J, Even J, Mohite AD. Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chem Rev 2023; 123:9565-9652. [PMID: 37428563 DOI: 10.1021/acs.chemrev.3c00214] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Three-dimensional (3D) organic-inorganic lead halide perovskites have emerged in the past few years as a promising material for low-cost, high-efficiency optoelectronic devices. Spurred by this recent interest, several subclasses of halide perovskites such as two-dimensional (2D) halide perovskites have begun to play a significant role in advancing the fundamental understanding of the structural, chemical, and physical properties of halide perovskites, which are technologically relevant. While the chemistry of these 2D materials is similar to that of the 3D halide perovskites, their layered structure with a hybrid organic-inorganic interface induces new emergent properties that can significantly or sometimes subtly be important. Synergistic properties can be realized in systems that combine different materials exhibiting different dimensionalities by exploiting their intrinsic compatibility. In many cases, the weaknesses of each material can be alleviated in heteroarchitectures. For example, 3D-2D halide perovskites can demonstrate novel behavior that neither material would be capable of separately. This review describes how the structural differences between 3D halide perovskites and 2D halide perovskites give rise to their disparate materials properties, discusses strategies for realizing mixed-dimensional systems of various architectures through solution-processing techniques, and presents a comprehensive outlook for the use of 3D-2D systems in solar cells. Finally, we investigate applications of 3D-2D systems beyond photovoltaics and offer our perspective on mixed-dimensional perovskite systems as semiconductor materials with unrivaled tunability, efficiency, and technologically relevant durability.
Collapse
Affiliation(s)
- Isaac Metcalf
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Siraj Sidhik
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Ayush Agrawal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jessica Persaud
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jacky Even
- Université de Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, 35708 Rennes, France
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Kumavat SR, Sonvane Y. Lead-free 2D MASnBr 3 and Ruddlesden-Popper BA 2MASn 2Br 7 as light harvesting materials. RSC Adv 2023; 13:7939-7951. [PMID: 36909767 PMCID: PMC9997451 DOI: 10.1039/d3ra00108c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
We have explored the structural, electronic, charge transport, and optical properties of lead-free 2D hybrid halide perovskites, MASnBr3 and Ruddlesden-Popper perovskites, BAMASn2Br7 monolayers. Under density functional theory (DFT) calculation, we applied mechanical strain, i.e., tensile and compressive strain up to 10% in both cases. The mechanical strain engineering technique is useful for a tuned bandgap of 2D MASnBr3 and 2D BAMASn2Br7. The calculated carrier mobility for the electron is 404 cm2 V-1 s-1 and for the hole is up to 800 cm2 V-1 s-1 for MASnBr3. For BAMASn2Br7 the highest carrier mobility is up to 557 cm2 V-1 s-1 for electrons and up to 779 cm2 V-1 s-1 for the hole, which is 14% and 24% higher than the reported lead-iodide based perovskites, respectively. The calculated solar cell efficiency of 2D MASnBr3 is 23.46%, which is 18% higher than the reported lead-based perovskites. Furthermore, the optical activity of the 2D MASnBr3 and 2D BAMASn2Br7 shows a high static dielectric constant of 2.48 and 2.14, respectively. This is useful to show nanodevice performance. Also, 2D MASNBr3 shows a high absorption coefficient of 15.25 × 105 cm-1 and 2D BAMASn2Br7 shows an absorption coefficient of up to 13.38 × 105 cm-1. Therefore our theoretical results suggest that the systems are under mechanical strain engineering. This is convenient for experimentalists to improve the performance of the 2D perovskites. The study supports these materials as good candidates for photovoltaic and optoelectronic device applications.
Collapse
Affiliation(s)
- Sandip R Kumavat
- Advanced Materials Lab, Department of Physics, Sardar Vallabhbhai National Institute of Technology Surat 395007 India
| | - Yogesh Sonvane
- Advanced Materials Lab, Department of Physics, Sardar Vallabhbhai National Institute of Technology Surat 395007 India
| |
Collapse
|
6
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Pnictogen Bond, Together with Other Non-Covalent Interactions, in the Rational Design of One-, Two- and Three-Dimensional Organic-Inorganic Hybrid Metal Halide Perovskite Semiconducting Materials, and Beyond. Int J Mol Sci 2022; 23:8816. [PMID: 35955945 PMCID: PMC9369011 DOI: 10.3390/ijms23158816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The pnictogen bond, a somewhat overlooked supramolecular chemical synthon known since the middle of the last century, is one of the promising types of non-covalent interactions yet to be fully understood by recognizing and exploiting its properties for the rational design of novel functional materials. Its bonding modes, energy profiles, vibrational structures and charge density topologies, among others, have yet to be comprehensively delineated, both theoretically and experimentally. In this overview, attention is largely centered on the nature of nitrogen-centered pnictogen bonds found in organic-inorganic hybrid metal halide perovskites and closely related structures deposited in the Cambridge Structural Database (CSD) and the Inorganic Chemistry Structural Database (ICSD). Focusing on well-characterized structures, it is shown that it is not merely charge-assisted hydrogen bonds that stabilize the inorganic frameworks, as widely assumed and well-documented, but simultaneously nitrogen-centered pnictogen bonding, and, depending on the atomic constituents of the organic cation, other non-covalent interactions such as halogen bonding and/or tetrel bonding, are also contributors to the stabilizing of a variety of materials in the solid state. We have shown that competition between pnictogen bonding and other interactions plays an important role in determining the tilting of the MX6 (X = a halogen) octahedra of metal halide perovskites in one, two and three-dimensions. The pnictogen interactions are identified to be directional even in zero-dimensional crystals, a structural feature in many engineered ordered materials; hence an interplay between them and other non-covalent interactions drives the structure and the functional properties of perovskite materials and enabling their application in, for example, photovoltaics and optoelectronics. We have demonstrated that nitrogen in ammonium and its derivatives in many chemical systems acts as a pnictogen bond donor and contributes to conferring stability, and hence functionality, to crystalline perovskite systems. The significance of these non-covalent interactions should not be overlooked, especially when the focus is centered on the rationale design and discovery of such highly-valued materials.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Kripalani DR, Cai Y, Lou J, Zhou K. Strong Edge Stress in Molecularly Thin Organic-Inorganic Hybrid Ruddlesden-Popper Perovskites and Modulations of Their Edge Electronic Properties. ACS NANO 2022; 16:261-270. [PMID: 34978421 DOI: 10.1021/acsnano.1c06158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic-inorganic hybrid Ruddlesden-Popper perovskites (HRPPs) have gained much attention for optoelectronic applications due to their high moisture resistance, good processability under ambient conditions, and long functional lifetimes. Recent success in isolating molecularly thin hybrid perovskite nanosheets and their intriguing edge phenomena have raised the need for understanding the role of edges and the properties that dictate their fundamental behaviors. In this work, we perform a prototypical study on the edge effects in ultrathin hybrid perovskites by considering monolayer (BA)2PbI4 as a representative system. On the basis of first-principles simulations of nanoribbon models, we show that in addition to significant distortions of the octahedra network at the edges, strong edge stresses are also present in the material. Structural instabilities that arise from the edge stress could drive the relaxation process and dominate the morphological response of edges in practice. A clear downward shift of the bands at the narrower ribbons, as indicative of the edge effect, facilitates the separation of photoexcited carriers (electrons move toward the edge and holes move toward the interior part of the nanosheet). Moreover, the desorption energy of the organic molecule can also be much lower at the free edges, making it easier for functionalization and/or substitution events to take place. The findings reported in this work elucidate the underlying mechanisms responsible for edge states in HRPPs and will be important in guiding the rational design and development of high-performance layer-edge devices.
Collapse
Affiliation(s)
- Devesh R Kripalani
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Jun Lou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
8
|
Su CY, Yao YF, Zhang ZX, Wang Y, Chen M, Huang PZ, Zhang Y, Qiao WC, Fu DW. The construction of a two-dimensional organic–inorganic hybrid double perovskite ferroelastic with a high Tc and narrow band gap. Chem Sci 2022; 13:4794-4800. [PMID: 35655872 PMCID: PMC9067571 DOI: 10.1039/d1sc07045b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Two-dimensional (2D) hybrid double perovskites have attracted extensive research interest for their fascinating physical properties, such as ferroelectricity, X-ray detection, light response and so on. In addition, ferroelastics, as an important branch of ferroic materials, exhibits wide prospects in mechanical switches, shape memory and templating electronic nanostructures. Here, we designed a 2D phase-transition double perovskite ferroelastic through a structurally progressive strategy. This evolution is core to our construction process from 0D to 1D and AgBi-based 2D. In this way, we successfully synthesized 2D lead-free ferroelastic (DPA)4AgBiBr8 (DPA = 2,2-dimethylpropan-1-aminium) with a high Curie temperature (Tc), which shows a narrower band gap than 0D (DPA)4Bi2Br10 and 1D (DPA)5Pb2Br9. Moreover, the mechanism of structural phase transition and molecular motion are fully characterized by temperature dependent solid-state NMR and single crystal XRD. (DPA)4AgBiBr8 injects power into the discovery of new ferroelastics or the construction and dimensional adjustment in new hybrid double perovskites. By using a lead-free AgBi-based scheme, we successfully synthesized a two-dimensional double perovskite ferroelastic (DPA)4AgBiBr8 with high Tc of 375 K and a narrow band gap of 2.44 eV, where DPA is 2,2-dimethylpropan-1-aminium.![]()
Collapse
Affiliation(s)
- Chang-Yuan Su
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, China
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Ye-Feng Yao
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Zhi-Xu Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, China
| | - Ying Wang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, China
| | - Ming Chen
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, China
| | - Wen-Cheng Qiao
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
9
|
Ruan H, Guo Z, Lin J, Liu K, Guo L, Chen X, Zhao J, Liu Q, Yuan W. Structure and Optical Properties of Hybrid-Layered-Double Perovskites (C 8H 20N 2) 2AgMBr 8 (M = In, Sb, and Bi). Inorg Chem 2021; 60:14629-14635. [PMID: 34523334 DOI: 10.1021/acs.inorgchem.1c01669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Pb-free hybrid-layered-double perovskites (HLDPs) have been proposed as green and stable semiconducting materials for optoelectronic devices, but the synthesized members are still limited. Here, we report the synthesis of three new HLDPs, (C8H20N2)2AgMBr8 (M = In, Sb, and Bi), by a solution method using 1,4-bis(ammoniomethyl)cyclohexane (C8H20N22+) as the organic spacing cation. All three of these HLDPs show ⟨100⟩-oriented layered structures with Ag and In/Sb/Bi order arranged in corner-sharing octahedral layers. The first-principle calculations indicate the indirect-gap nature of (C8H20N2)2AgInBr8 and (C8H20N2)2AgSbBr8, while their Bi counterpart shows a direct band gap after considering spin-orbit coupling. The band gaps obtained by diffuse-reflectance spectroscopy are 3.11, 2.60, and 2.70 eV for M = In, Sb, and Bi, respectively. (C8H20N2)2AgInBr8 shows a broadband red emission centered at 690 nm, and it is mainly attributed to the self-trapped-excitons mechanism. Our results not only provide a series of new "Pb-free" HLDPs with chemical diversity but also help us to further understand the structure-property relationships of HLDP materials.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingling Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Wolf NR, Connor BA, Slavney AH, Karunadasa HI. Doubling the Stakes: The Promise of Halide Double Perovskites. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nathan R. Wolf
- Department of Chemistry Stanford University Stanford California 94305 USA
| | - Bridget A. Connor
- Department of Chemistry Stanford University Stanford California 94305 USA
| | - Adam H. Slavney
- Department of Chemistry Stanford University Stanford California 94305 USA
| | - Hemamala I. Karunadasa
- Department of Chemistry Stanford University Stanford California 94305 USA
- Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| |
Collapse
|
11
|
McNulty JA, Lightfoot P. Structural chemistry of layered lead halide perovskites containing single octahedral layers. IUCRJ 2021; 8:485-513. [PMID: 34258000 PMCID: PMC8256700 DOI: 10.1107/s2052252521005418] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/24/2021] [Indexed: 06/01/2023]
Abstract
We present a comprehensive review of the structural chemistry of hybrid lead halides of stoichiometry APbX 4, A 2PbX4 or A A'PbX 4, where A and A' are organic ammonium cations and X = Cl, Br or I. These compounds may be considered as layered perovskites, containing isolated, infinite layers of corner-sharing PbX 4 octahedra separated by the organic species. First, over 250 crystal structures were extracted from the CCDC and classified in terms of unit-cell metrics and crystal symmetry. Symmetry mode analysis was then used to identify the nature of key structural distortions of the [PbX 4]∞ layers. Two generic types of distortion are prevalent in this family: tilting of the octahedral units and shifts of the inorganic layers relative to each other. Although the octahedral tilting modes are well known in the crystallography of purely inorganic perovskites, the additional layer-shift modes are shown to enormously enrich the structural options available in layered hybrid perovskites. Some examples and trends are discussed in more detail in order to show how the nature of the interlayer organic species can influence the overall structural architecture; although the main aim of the paper is to encourage workers in the field to make use of the systematic crystallographic methods used here to further understand and rationalize their own compounds, and perhaps to be able to design-in particular structural features in future work.
Collapse
Affiliation(s)
- Jason A. McNulty
- School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Philip Lightfoot
- School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| |
Collapse
|
12
|
Connor BA, Smaha RW, Li J, Gold-Parker A, Heyer AJ, Toney MF, Lee YS, Karunadasa HI. Alloying a single and a double perovskite: a Cu +/2+ mixed-valence layered halide perovskite with strong optical absorption. Chem Sci 2021; 12:8689-8697. [PMID: 34257867 PMCID: PMC8246118 DOI: 10.1039/d1sc01159f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Introducing heterovalent cations at the octahedral sites of halide perovskites can substantially change their optoelectronic properties. Yet, in most cases, only small amounts of such metals can be incorporated as impurities into the three-dimensional lattice. Here, we exploit the greater structural flexibility of the two-dimensional (2D) perovskite framework to place three distinct stoichiometric cations in the octahedral sites. The new layered perovskites AI 4[CuII(CuIInIII)0.5Cl8] (1, A = organic cation) may be derived from a CuI-InIII double perovskite by replacing half of the octahedral metal sites with Cu2+. Electron paramagnetic resonance and X-ray absorption spectroscopy confirm the presence of Cu2+ in 1. Crystallographic studies demonstrate that 1 represents an averaging of the CuI-InIII double perovskite and CuII single perovskite structures. However, whereas the highly insulating CuI-InIII and CuII perovskites are colorless and yellow, respectively, 1 is black, with substantially higher electronic conductivity than that of either endmember. We trace these emergent properties in 1 to intervalence charge transfer between the mixed-valence Cu centers. We further propose a tiling model to describe how the Cu+, Cu2+, and In3+ coordination spheres can pack most favorably into a 2D perovskite lattice, which explains the unusual 1 : 2 : 1 ratio of these cations found in 1. Magnetic susceptibility data of 1 further corroborate this packing model. The emergence of enhanced visible light absorption and electronic conductivity in 1 demonstrates the importance of devising strategies for increasing the compositional complexity of halide perovskites.
Collapse
Affiliation(s)
- Bridget A Connor
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Rebecca W Smaha
- Department of Chemistry, Stanford University Stanford California 94305 USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Jiayi Li
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Aryeh Gold-Parker
- Department of Chemistry, Stanford University Stanford California 94305 USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Alexander J Heyer
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Michael F Toney
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder Boulder CO 80309 USA
| | - Young S Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
- Department of Applied Physics, Stanford University Stanford California 94305 USA
| | - Hemamala I Karunadasa
- Department of Chemistry, Stanford University Stanford California 94305 USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| |
Collapse
|
13
|
Wolf NR, Connor BA, Slavney AH, Karunadasa HI. Doubling the Stakes: The Promise of Halide Double Perovskites. Angew Chem Int Ed Engl 2021; 60:16264-16278. [DOI: 10.1002/anie.202016185] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Nathan R. Wolf
- Department of Chemistry Stanford University Stanford California 94305 USA
| | - Bridget A. Connor
- Department of Chemistry Stanford University Stanford California 94305 USA
| | - Adam H. Slavney
- Department of Chemistry Stanford University Stanford California 94305 USA
| | - Hemamala I. Karunadasa
- Department of Chemistry Stanford University Stanford California 94305 USA
- Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| |
Collapse
|
14
|
Martín-García B, Spirito D, Biffi G, Artyukhin S, Francesco Bonaccorso, Krahne R. Phase Transitions in Low-Dimensional Layered Double Perovskites: The Role of the Organic Moieties. J Phys Chem Lett 2021; 12:280-286. [PMID: 33337162 PMCID: PMC7872418 DOI: 10.1021/acs.jpclett.0c03275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 09/02/2023]
Abstract
Halide double perovskites are an interesting alternative to Pb-containing counterparts as active materials in optoelectronic devices. Low-dimensional double perovskites are fabricated by introducing large organic cations, resulting in organic/inorganic architectures with one or more inorganic octahedra layers separated by organic cations. Here, we synthesized layered double perovskites based on 3D Cs2AgBiBr6, consisting of double (2L) or single (1L) inorganic octahedra layers, using ammonium cations of different sizes and chemical structures. Temperature-dependent Raman spectroscopy revealed phase transition signatures in both inorganic lattice and organic moieties by detecting variations in their vibrational modes. Changes in the conformational arrangement of the organic cations to an ordered state coincided with a phase transition in the 1L systems with the shortest ammonium moieties. Significant changes of photoluminescence intensity observed around the transition temperature suggest that optical properties may be affected by the octahedral tilts emerging at the phase transition.
Collapse
Affiliation(s)
- Beatriz Martín-García
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- CIC
nanoGUNE, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastian, Basque Country, Spain
| | - Davide Spirito
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- IHP−Leibniz-Institut
für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - Giulia Biffi
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Sergey Artyukhin
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Bonaccorso
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BeDimensional
S.p.A., Via Lungotorrente
secca 3d, 16163 Genova, Italy
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
15
|
Yang H, Shi W, Cai T, Hills-Kimball K, Liu Z, Dube L, Chen O. Synthesis of lead-free Cs 4(Cd 1-xMn x)Bi 2Cl 12 (0 ≤ x ≤ 1) layered double perovskite nanocrystals with controlled Mn-Mn coupling interaction. NANOSCALE 2020; 12:23191-23199. [PMID: 33201164 DOI: 10.1039/d0nr06771g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lead-free perovskites and their analogues have been extensively studied as a class of next-generation luminescent and optoelectronic materials. Herein, we report the synthesis of new colloidal Cs4M(ii)Bi2Cl12 (M(ii) = Cd, Mn) nanocrystals (NCs) with unique luminescence properties. The obtained Cs4M(ii)Bi2Cl12 NCs show a layered double perovskite (LDP) crystal structure with good particle stability. Density functional theory calculations show that both samples exhibit a wide, direct bandgap feature. Remarkably, the strong Mn-Mn coupling effect of the Cs4M(ii)Bi2Cl12 NCs results in an ultra-short Mn photoluminescence (PL) decay lifetime of around 10 μs, around two orders of magnitude faster than commonly observed Mn2+ dopant emission in NCs. Diluting the Mn2+ ion concentration through forming Cs4(Cd1-xMnx)Bi2Cl12 (0 < x < 1) alloyed LDP NCs leads to prolonged PL lifetimes and enhanced PL quantum yields. Our study provides the first synthetic example of Bi-based LDP colloidal NCs with potential for serving as a new category of stable lead-free perovskite-type materials for various applications.
Collapse
Affiliation(s)
- Hanjun Yang
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | | | |
Collapse
|