1
|
Jeevananthan V, Senadi GC, Muthu K, Arumugam A, Shanmugan S. Construction of Indium(III)-Organic Framework Based on a Flexible Cyclotriphosphazene-Derived Hexacarboxylate as a Reusable Green Catalyst for the Synthesis of Bioactive Aza-Heterocycles. Inorg Chem 2024; 63:5446-5463. [PMID: 38456408 DOI: 10.1021/acs.inorgchem.3c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The constant demand for eco-friendly methods of synthesizing complex organic compounds inspired researchers to design and develop modern, highly efficient heterogeneous catalytic systems. Herein, In-HCPCP metal-organic framework (SRMIST-1), a heterogeneous Lewis acid catalyst containing less toxic indium and eco-friendly robust cyclotriphosphazene and exhibiting notable chemical and thermal stability, durable catalytic activity, and exceptional reusability was produced through the reaction between indium(III) nitrate hydrate and hexakis(4-carboxylatophenoxy)-cyclotriphosphazene. In the SRMIST-1 structure, secondary building units {InO7} are assembled by a connection of η2- and η1-carboxylic oxo atoms from different HCPCP ligands, forming a three-dimensional network. The occurrence of regularly distributed In(III) sites in SRMIST-1 confers superior reactivity on the catalyst toward the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxides by the cyclization reaction of 2-aminobenzamides and 2-aminobenzenesulphonamides with aldehydes under optimized reaction conditions, respectively. The notable features of this method include broad functional group compatibility, low catalyst loading (1-5 mol %), mild reaction conditions, easy workup procedures, good to excellent reaction yields, ethanol as a green solvent, reusability of the catalyst (five cycles), and economic attractiveness, which is mainly due to sustainability of SRMIST-1 as a reusable green catalyst. Our findings demonstrate that the highly reactive and reusable green catalyst finds widespread applications in medicinal chemistry.
Collapse
Affiliation(s)
- Velusamy Jeevananthan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ajithkumar Arumugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Swaminathan Shanmugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
2
|
Wang ZY, Jiang S, Lv MX, Liu ZW, Chi YX, Bai FY, Xing YH. RhB-Embedded Mn-MOF with Cyclotriphosphazene Skeleton as Dual-Emission Sensor for Putrescine as well as Smart Fluorescent Response of Aromatic Diamines and Nitrophenol. Inorg Chem 2023; 62:18414-18424. [PMID: 37917828 DOI: 10.1021/acs.inorgchem.3c02363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Luminescent metal-organic framework composites with multiple luminescence emissions have been efficient sensing platforms. Herein, a fluorescent sensor (RhB@1-0.4) with dual-emission fluorescence properties was prepared by introducing rhodamine B (RhB) into the framework of complex 1, [Mn2.5(HCPCP)(H2O)4]·(CH3CN)0.5 [HCPCP = hexa-(4-carboxyl-phenoxy)-cyclotriphosphazene and CH3CN = acetonitrile), which is a novel crystalline two-dimensional (2D) coordinated organic framework material. It is a highly desirable material, realizing a ratiometric fluorescence response to putrescine with a high signal-to-noise ratio, and the detection limit can be as low as 6.8 μM. In addition, RhB@1-0.4 exhibited a better fluorescent sensing performance for aromatic diamines and nitrophenols compared with that of complex 1. It is a potential functionalized MOF material for the application of multichannel fluorescence sensing.
Collapse
Affiliation(s)
- Zi Yang Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Mei Xin Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zi Wen Liu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yu Xian Chi
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
3
|
Gascón E, Otal I, Maisanaba S, Llana-Ruiz-Cabello M, Valero E, Repetto G, Jones PG, Oriol L, Jiménez J. Gold(I) metallocyclophosphazenes with antibacterial potency and antitumor efficacy. Synergistic antibacterial action of a heterometallic gold and silver-cyclophosphazene. Dalton Trans 2022; 51:13657-13674. [PMID: 36040292 DOI: 10.1039/d2dt01963a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most important uses of phosphazenes today involves its biomedical applications. They can also be employed as scaffolds for the design and construction of a variety of ligands in order to coordinate them to metallic drugs. The coordination chemistry of the (amino)cyclotriphosphazene ligand, [N3P3(NHCy)6], towards gold(I) complexes has been studied. Neutral complexes, [N3P3(NHCy)6{AuX}n] (X = Cl or C6F5; n = 1 or 2) (1-4), cationic complexes, [N3P3(NHCy)6{Au(PR3)}n](NO3)n (PR3 = PPh3, PPh2Me, TPA; n = 1, 2 or 3) (6-12) [TPA = 1,3,5-triaza-7-phosphaadamantane] and a heterometallic compound [N3P3(NHCy)6{Au(PPh3)}2{Ag(PPh3)}](NO3)3 (13) have been obtained and characterized by various methods including single-crystal X-ray diffraction for 7, which confirms the coordination of gold atoms to the nitrogens of the phosphazene ring. Compounds 1, 4, 6-13 were screened for in vitro cytotoxic activity against two tumor human cell lines, MCF7 (breast adenocarcinoma) and HepG2 (hepatocellular carcinoma), and for antimicrobial activity against five bacterial species including Gram-positive, Gram-negative, and Mycobacteria. Both the median inhibitory concentration (IC50) and minimum inhibitory concentration (MIC) values are among the lowest found for any gold or silver derivatives against the cell lines and particularly against the Gram-positive (S. aureus) strain and the mycobacteria used in this work. Structure-activity relationships are discussed in order to determine the influence of ancillary ligands and the number and type of metal atoms (silver or gold). Compounds 4 and 8 showed not only maximal potency on human cells but also some tumour selectivity. Remarkably, compound 13, with both gold and silver atoms, showed outstanding activity against both Gram-positive and Gram-negative strains (nanomolar range), thus having a cooperative effect between gold and silver, with MIC values which are similar or lower than those of gentamicine, ciprofloxacin and rifampicine. The broad spectrum antimicrobial efficacy of all these metallophosphazenes and particularly of heterometallic compound 13 could be very useful to obtain materials for surfaces with antimicrobial properties that are increasingly in demand.
Collapse
Affiliation(s)
- Elena Gascón
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Isabel Otal
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Sara Maisanaba
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - María Llana-Ruiz-Cabello
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área Nutrición y Bromatología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Guillermo Repetto
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Peter G Jones
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106, Braunschweig, Germany
| | - Luis Oriol
- Departamento de Química Orgánica, Instituto de Nanociencia y Materiales de Aragón-Facultad de Ciencias, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Josefina Jiménez
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
5
|
Palabıyık D, Mutlu Balcı C. Synthesis, characterization, and spectroscopic properties of the new type of aminoquinoline-modified cyclotriphosphazenes. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2046570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Duygu Palabıyık
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ceylan Mutlu Balcı
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
8
|
Mutlu Balcı C, Tümay SO, Beşli S. ESIPT on/off switching and crystallization-enhanced emission properties of new design phenol-pyrazole modified cyclotriphosphazenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj00894c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cyclophosphazene-based high-efficiency excited state intramolecular proton transfer (ESIPT) active and inactive molecules were prepared depending on the different bonding patterns of the difunctional phenol-pyrazol reagent.
Collapse
Affiliation(s)
- Ceylan Mutlu Balcı
- Department of Chemistry
- Gebze Technical University
- 41400 Gebze-Kocaeli
- Turkey
| | - Süreyya Oğuz Tümay
- Department of Chemistry
- Gebze Technical University
- 41400 Gebze-Kocaeli
- Turkey
| | - Serap Beşli
- Department of Chemistry
- Gebze Technical University
- 41400 Gebze-Kocaeli
- Turkey
| |
Collapse
|