1
|
Mukherjee G, Velmurugan G, Kerscher M, Kumar Satpathy J, Sastri CV, Comba P. Mechanistic Insights into Amphoteric Reactivity of an Iron-Bispidine Complex. Chemistry 2024; 30:e202303127. [PMID: 37942658 DOI: 10.1002/chem.202303127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
The reactivity of FeIII -alkylperoxido complexes has remained a riddle to inorganic chemists owing to their thermal instability and impotency towards organic substrates. These iron-oxygen adducts have been known as sluggish oxidants towards oxidative electrophilic and nucleophilic reactions. Herein, we report the synthesis and spectroscopic characterization of a relatively stable mononuclear high-spin FeIII -alkylperoxido complex supported by an engineered bispidine framework. Against the notion, this FeIII -alkylperoxido complex serves as a rare example of versatile reactivity in both electrophilic and nucleophilic reactions. Detailed mechanistic studies and computational calculations reveal a novel reaction mechanism, where a putative superoxido intermediate orchestrates the amphoteric property of the oxidant. The design of the backbone is pivotal to convey stability and reactivity to alkylperoxido and superoxido intermediates. Contrary to the well-known O-O bond cleavage that generates an FeIV -oxido species, the FeIII -alkylperoxido complex reported here undergoes O-C bond scission to generate a superoxido moiety that is responsible for the amphiphilic reactivity.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad, 500007, India
| | - Gunasekaran Velmurugan
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| | - Marion Kerscher
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| | - Jagnyesh Kumar Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Peter Comba
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| |
Collapse
|
2
|
Manickas EC, LaLonde AB, Hu MY, Alp EE, Lehnert N. Stabilization of a Heme-HNO Model Complex Using a Bulky Bis-Picket Fence Porphyrin and Reactivity Studies with NO. J Am Chem Soc 2023; 145:23014-23026. [PMID: 37824502 DOI: 10.1021/jacs.3c05333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Nitroxyl, HNO/NO-, the one-electron reduced form of NO, is suggested to take part in distinct signaling pathways in mammals and is also a key intermediate in various heme-catalyzed NOx interconversions in the nitrogen cycle. Cytochrome P450nor (Cyt P450nor) is a heme-containing enzyme that performs NO reduction to N2O in fungal denitrification. The reactive intermediate in this enzyme, termed "Intermediate I", is proposed to be an Fe-NHO/Fe-NHOH type species, but it is difficult to study its electronic structure and exact protonation state due to its instability. Here, we utilize a bulky bis-picket fence porphyrin to obtain the first stable heme-HNO model complex, [Fe(3,5-Me-BAFP)(MI)(NHO)], as a model for Intermediate I, and more generally HNO adducts of heme proteins. Due to the steric hindrance of the bis-picket fence porphyrin, [Fe(3,5-Me-BAFP)(MI)(NHO)] is stable (τ1/2 = 56 min at -30 °C), can be isolated as a solid, and is available for thorough spectroscopic characterization. In particular, we were able to solve a conundrum in the literature and provide the first full vibrational characterization of a heme-HNO complex using IR and nuclear resonance vibrational spectroscopy (NRVS). Reactivity studies of [Fe(3,5-Me-BAFP)(MI)(NHO)] with NO gas show a 91 ± 10% yield for N2O formation, demonstrating that heme-HNO complexes are catalytically competent intermediates for NO reduction to N2O in Cyt P450nor. The implications of these results for the mechanism of Cyt P450nor are further discussed.
Collapse
Affiliation(s)
- Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Ashley B LaLonde
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Michael Y Hu
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - E Ercan Alp
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
3
|
Mohamed H, Ghith A, Bell SG. The binding of nitrogen-donor ligands to the ferric and ferrous forms of cytochrome P450 enzymes. J Inorg Biochem 2023; 242:112168. [PMID: 36870164 DOI: 10.1016/j.jinorgbio.2023.112168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The cytochrome P450 superfamily of heme-thiolate monooxygenase enzymes can catalyse various oxidation reactions. The addition of a substrate or an inhibitor ligand induces changes in the absorption spectrum of these enzymes and UV-visible (UV-vis) absorbance spectroscopy is the most common and readily available technique used to interrogate their heme and active site environment. Nitrogen-containing ligands can inhibit the catalytic cycle of heme enzymes by interacting with the heme. Here we evaluate the binding of imidazole and pyridine-based ligands to the ferric and ferrous forms of a selection of bacterial cytochrome P450 enzymes using UV-visible absorbance spectroscopy. The majority of these ligands interact with the heme as one would expect for type II nitrogen directly coordinated to a ferric heme-thiolate species. However, the spectroscopic changes observed in the ligand-bound ferrous forms indicated differences in the heme environment across these P450 enzyme/ligand combinations. Multiple species were observed in the UV-vis spectra of the ferrous ligand-bound P450s. None of the enzymes gave rise to the isolation of a single species with a Soret band at ∼442-447 nm, indicative of a 6-coordinate ferrous thiolate species with a nitrogen-donor ligand. A ferrous species with Soret band at ∼427 nm coupled with an α-band of increased intensity was observed with the imidazole ligands. With some enzyme-ligand combinations reduction resulted in breaking of the iron‑nitrogen bond yielding a 5-coordinate high-spin ferrous species. In other instances, the ferrous form was readily oxidised back to the ferric form on addition of the ligand.
Collapse
Affiliation(s)
- Hebatalla Mohamed
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | - Amna Ghith
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
4
|
Bieza S, Mazzeo A, Pellegrino J, Doctorovich F. H 2S/Thiols, NO •, and NO -/HNO: Interactions with Iron Porphyrins. ACS OMEGA 2022; 7:1602-1611. [PMID: 35071856 PMCID: PMC8771695 DOI: 10.1021/acsomega.1c06427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 05/14/2023]
Abstract
In the past decade, gasotransmitters NO• and H2S have been thoroughly studied in biological contexts, as their biosynthesis and physiological effects became known. Moreover, an additional intricate crosstalk reaction scheme between these compounds and related species is thought to exist as part of the cascade signaling processes in physiological conditions. In this context, heme enzymes, as modeled by iron porphyrins, play a central role in catalyzing the key interconversions involved. In this work, iron porphyrin interactions with sulfide and nitric-oxide-related species are described. The stability and reactivity of mixed ternary systems are also described, and future perspectives are discussed.
Collapse
|
5
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
6
|
Pal N, White CJ, Demeshko S, Meyer F, Lehnert N, Majumdar A. A Monohydrosulfidodinitrosyldiiron Complex That Generates N 2O as a Model for Flavodiiron Nitric Oxide Reductases: Reaction Mechanism and Electronic Structure. Inorg Chem 2021; 60:15890-15900. [PMID: 34106714 DOI: 10.1021/acs.inorgchem.1c00429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Flavodiiron nitric oxide reductases (FNORs) protect microbes from nitrosative stress under anaerobic conditions by mediating the reduction of nitric oxide (NO) to nitrous oxide (N2O). The proposed mechanism for the catalytic reduction of NO by FNORs involves a dinitrosyldiiron intermediate with a [hs-{FeNO}7]2 formulation, which produces N2O and a diferric species. Moreover, both NO and hydrogen sulfide (H2S) have been implicated in several similar physiological functions in biology and are also known to cross paths in cell signaling. Here we report the synthesis, spectroscopic and theoretical characterization, and N2O production activity of an unprecedented monohydrosulfidodinitrosyldiiron compound, with a [(HS)hs-{FeNO}7/hs-{FeNO}7] formulation, that models the key dinitrosyl intermediate of FNORs. The generation of N2O from this unique compound follows a semireduced pathway, where one-electron reduction generates a reactive hs-{FeNO}8 center via the occupation of an Fe-NO antibonding orbital. In contrast to the well-known reactivity of H2S and NO, the coordinated hydrosulfide remains unreactive toward NO and acts only as a spectator ligand during the NO reduction process.
Collapse
Affiliation(s)
- Nabhendu Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Corey J White
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Nicolai Lehnert
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
7
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|