1
|
Boyarintsev AV, Stepanov SI, Kostikova GV, Zhilov VI, Safiulina AM, Tsivadze AY. Separation and purification of elements from alkaline and carbonate nuclear waste solutions. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Ren P, Wang CZ, Tao WQ, Yang XF, Yang SL, Yuan LY, Chai ZF, Shi WQ. Selective Separation and Coordination of Europium(III) and Americium(III) by Bisdiglycolamide Ligands: Solvent Extraction, Spectroscopy, and DFT Calculations. Inorg Chem 2020; 59:14218-14228. [PMID: 32914963 DOI: 10.1021/acs.inorgchem.0c02011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diglycolamide-based ligands have recently received increased attention due to their outstanding affinity for trivalent actinides and lanthanides. The structure optimization of the ligands, however, still remains a hot topic to achieve better extraction performance. In this work, we prepare and investigate three multidentate diglycolamide ligands for the selective separation of Eu(III) over Am(III) from a nitric acid solution to explore the effect on the extraction of alkyl groups on the nitrogen atoms in the center of the BisDGA ligands. The introduction of ethyl or isopropyl groups on the central nitrogen atoms greatly increased the distribution ratios of trivalent metal ions and enhanced the separation factor of Eu(III) over Am(III). The complexation behaviors of Eu(III) and Am(III) ions were studied by slope analyses, electrospray ionization mass spectrometry (ESI-MS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. The results indicated that the trivalent metal ions were extracted as 1:2 and 1:3 complexes for all three BisDGA ligands during the extraction. Density functional theory (DFT) calculations verified the relevant experimental conclusion that the selectivity of THEE-BisDGA for Eu(III) is better than that for Am(III). The metal-DGA bonds in the ML3(NO3)3 complexes seem to be stronger than those in ML2(NO3)3 complexes.
Collapse
Affiliation(s)
- Peng Ren
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Fundamental Science on Radioactive Geology and Exploration Technology, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wu-Qing Tao
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Xiao-Fan Yang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Su-Liang Yang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineer Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|