1
|
Chen R, Sun C, Cheng X, Lin Y, Zhou J, Yin J, Cui BB, Mao L. One-Dimensional Organic-Inorganic Lead Bromide Hybrids with Excitation-Dependent White-Light Emission Templated by Pyridinium Derivatives. Inorg Chem 2023. [PMID: 37285221 DOI: 10.1021/acs.inorgchem.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic-inorganic hybrid metal halides have attracted widespread attention due to their excellent tunability and versatility. Here, we have selected pyridinium derivatives with different substituent groups or substitution positions as the organic templating cations and obtained six 1D chain-like structures. They are divided into three types: type I (single chain), type II (double chain), and type III (triple chain), with tunable optical band gaps and emission properties. Among them, only (2,4-LD)PbBr3 (2,4-LD = 2,4-lutidine) shows an exciton-dependent emission phenomenon, ranging from strong yellow-white to weak red-white light. By comparing its photoluminescence spectrum with that of its bromate (2,4-LD)Br, it is found that the strong yellow-white emission at 534 nm mainly came from the organic component. Furthermore, through a comparison of the fluorescence spectra and lifetimes of (2,4-LD)PbBr3 and (2-MP)PbBr3 (2-MP = 2-methylpyridine) with similar structures at different temperatures, we confirm that the tunable emission of (2,4-LD)PbBr3 comes from different photoluminescent sources corresponding to organic cations and self-trapped excitons. Density functional theory calculations further reveal that (2,4-LD)PbBr3 has a stronger interaction between organic and inorganic components compared to (2-MP)PbBr3. This work highlights the importance of organic templating cations in hybrid metal halides and the new functionalities associated with them.
Collapse
Affiliation(s)
- Runan Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohua Cheng
- Advanced Research Institute of Multidisciplinary Science, Schools of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Yufan Lin
- Advanced Research Institute of Multidisciplinary Science, Schools of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Jiaqian Zhou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bin-Bin Cui
- Advanced Research Institute of Multidisciplinary Science, Schools of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Nosov VG, Toikka YN, Petrova AS, Butorlin OS, Kolesnikov IE, Orlov SN, Ryazantsev MN, Kolesnik SS, Bogachev NA, Skripkin MY, Mereshchenko AS. Brightly Luminescent (Tb xLu 1-x) 2bdc 3·nH 2O MOFs: Effect of Synthesis Conditions on Structure and Luminescent Properties. Molecules 2023; 28:molecules28052378. [PMID: 36903620 PMCID: PMC10005128 DOI: 10.3390/molecules28052378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Luminescent, heterometallic terbium(III)-lutetium(III) terephthalate metal-organic frameworks (MOFs) were synthesized via direct reaction between aqueous solutions of disodium terephthalate and nitrates of corresponding lanthanides by using two methods: synthesis from diluted and concentrated solutions. For (TbxLu1-x)2bdc3·nH2O MOFs (bdc = 1,4-benzenedicarboxylate) containing more than 30 at. % of Tb3+, only one crystalline phase was formed: Ln2bdc3·4H2O. At lower Tb3+ concentrations, MOFs crystallized as the mixture of Ln2bdc3·4H2O and Ln2bdc3·10H2O (diluted solutions) or Ln2bdc3 (concentrated solutions). All synthesized samples that contained Tb3+ ions demonstrated bright green luminescence upon excitation into the 1ππ* excited state of terephthalate ions. The photoluminescence quantum yields (PLQY) of the compounds corresponding to the Ln2bdc3 crystalline phase were significantly larger than for Ln2bdc3·4H2O and Ln2bdc3·10H2O phases due to absence of quenching from water molecules possessing high-energy O-H vibrational modes. One of the synthesized materials, namely, (Tb0.1Lu0.9)2bdc3·1.4H2O, had one of the highest PLQY among Tb-based MOFs, 95%.
Collapse
Affiliation(s)
- Viktor G. Nosov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Yulia N. Toikka
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Anna S. Petrova
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Oleg S. Butorlin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Ilya E. Kolesnikov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Sergey N. Orlov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Federal State Unitary Enterprise “Alexandrov Research Institute of Technology”, 72 Koporskoe Shosse, 188540 Sosnovy Bor, Russia
- Institute of Nuclear Industry, Peter the Great St. Petersburg Polytechnic University (SPbSU), 29 Polytechnicheskaya Street, 195251 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, ul. Khlopina 8/3, 194021 St. Petersburg, Russia
| | - Stefaniia S. Kolesnik
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Nikita A. Bogachev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Mikhail Yu. Skripkin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-951-677-5465
| |
Collapse
|
3
|
Bashir Ganaie A, Iftikhar K. Stoichiometrically controlled synthesis and comparative study of photoluminescence of seven and eight coordinate complexes of Sm3+, Eu3+ and Tb3+ based on 6,6,7,7,8,8,8- heptafluoro-2,2-dimethyl-3,5-octanedione (Hfod) and imidazole. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Lu YB, Wu JW, Zhu SD, Wang SQ, Zhang SY, Liu CM, Li R, Li J, Ai JH, Xie YR. 3-Pyridylacetic-Based Lanthanide Complexes Exhibiting Magnetic Entropy Changes, Single-Molecule Magnet, and Fluorescence. ACS OMEGA 2022; 7:2604-2612. [PMID: 35097258 PMCID: PMC8793079 DOI: 10.1021/acsomega.1c04728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Four complexes from lanthanides, 3-pyridylacetate, and 1,10-phenanthroline, formulated as [Ln2(3-PAA)2(μ-Cl)2(phen)4](ClO4)2 [Ln = Gd(1), Dy(2), Eu(3), Tb(4), 3-PAA = 3-pyridylacetic acid, phen = 1,10-phenanthroline], were obtained. The four compounds were characterized by IR spectra, thermogravimetric analyses, powder X-ray diffraction, and single-crystal X-ray diffraction. Compounds 1-4 are isomorphous, and they have a dinuclear structure. Magnetic studies reveal that 1 shows the magnetocaloric effect with -ΔS m max = 19.03 J kg-1 K-1 at 2 K for ΔH = 5 T, and 2 displays a field-induced single-molecule magnet with U eff = 19.02 K. The photoluminescent spectra of 3 and 4 exhibit strong characteristic emission, which demonstrate that the ligand-to-EuIII/TbIII energy transfer is efficient.
Collapse
Affiliation(s)
- Ying-Bing Lu
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
- National-Local
Joint Engineering Research Center of Heavy Metals Pollutants Control
and Resource Utilization, Nanchang Hangkong
University, Nanchang 330000, P. R. China
| | - Jun-Wei Wu
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Shui-Dong Zhu
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Sheng-Qian Wang
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Shi-Yong Zhang
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Cai-Ming Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Rong Li
- School
of Materials Science & Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Juan Li
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Jia-Hao Ai
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Yong-Rong Xie
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
5
|
Zhang RY, Cui MH, Wang WW, Li WL, Zhao JP, Liu FC. Dicarboxylate Modulating Molecular-Ionic Platinum Compounds with Variable Stacking and Photoluminescence. Inorg Chem 2022; 61:1997-2009. [PMID: 35029375 DOI: 10.1021/acs.inorgchem.1c03146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under solvothermal conditions, 10 molecular-ionic platinum compounds [Pt(NIA)2]·(L)·nH2O (L = dicarboxylate) were synthesized. In the reaction, acetonitrile undergoes trimerization in situ to generate N-(1-iminoethyl)acetamidine (NIA), which coordinates to PtII ions in forming the N-(1-iminoethyl)acetamidine platinum cation, while the organic carboxylates act as anions. Structural analysis shows that carboxylate ligands regulate the mode of packing of [Pt(NIA)2] in those compounds. Photoluminescence studies show that the photoluminescence behaviors of those compounds also depended on the carboxylate ligands. 1-4, 6, and 7 show blue light emission with fluorescence emission wavelengths of 437-440 nm despite the different carboxylate ligands used. 5 and 8 show green emissions with maximum intensity peak positions of 522 nm. Compared with that of 5 and 8, the emission of 9 and 10 has the same red shifts with peak positions of 567 and 528 nm. The variable-temperature photoluminescence studies reveal that 8 and 10 show two different thermal quenching (TQ) zones in the range of 80-420 K, while the emission intensity of 9 shows negative thermal quenching at low temperatures of 80-220 K and TQ in the range of 220-420 K.
Collapse
Affiliation(s)
- Ruo-Yi Zhang
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Ming-Hui Cui
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wei-Wei Wang
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wen-Liang Li
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jiong-Peng Zhao
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Fu-Chen Liu
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
6
|
Qian J, Lu H, Zheng Z, Xu M, Qian Y, Zhang ZH, Wang JQ, He MY, Lin J. Achieving colour tuneable and white-light luminescence in a large family of dual-emission lanthanide coordination polymers. Dalton Trans 2021; 50:14325-14331. [PMID: 34558579 DOI: 10.1039/d1dt01618k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expanding the family of lanthanide terpyridine coordination polymers has yielded eighteen new complexes with two different phases, Ln(TPC)2(HCOO)(H2O) (Ln-1) and Ln(TPC)(HCOO)2 (Ln-2) (Ln = Sm-Lu, except Tm). Both structures are composed of lanthanide cations interconnected by 2,2':6',2''-terpyridine-4'-carboxylate ligands to yield one-dimensional chain topologies. However, the incorporation of an additional crystallographically unique decorative TPC ligand into Ln-1 gives rises to a distinct phase. The encapsulation of both metal- and ligand-based phosphors within single coordination polymers leads to dual-emission of the afforded materials. Furthermore, judicious lanthanide doping in heterometallic Ln-1 and Ln-2 allows for fine-tuning the photoluminescent colours over a wide range of gamut. Such a combination showcases the capability to fine-tune the emission colours from deep green, to red, and to blue. In addition, direct white-light emission upon UV excitation can be achieved in the SmxGd1-x-1 system.
Collapse
Affiliation(s)
- Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Miaomiao Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jian Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Price J, Balónová B, Blight BA, Eisler S. Shedding light on predicting and controlling emission chromaticity in multicomponent photoluminescent systems. Chem Sci 2021; 12:12092-12097. [PMID: 34667574 PMCID: PMC8457367 DOI: 10.1039/d1sc03447b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/08/2021] [Indexed: 12/31/2022] Open
Abstract
Predictable colour tuning in multicomponent photoluminescent (PL) systems is achieved using mixtures of simultaneously emitting organic molecules. By mitigating the potential for energy transfer through the control of concentration, the resulting emission chromaticity of five dichromic PL systems is approximated as a linear combination of the emitting components and their corresponding brightness (χ i , ϕ i , and I ex,i ). Despite being limited to dilute solutions (10-6 M), colour tuning within these systems was controlled by (1) varying the composition of the components and (2) exploiting the differences in the components' excitation intensities at common wavelengths. Using this approach, white light emission (WLE) was realized using a pre-determined mixture of red, green, and blue emitting organic molecules. Based on these results, materials and devices with built-in or programmable emission colour can be achieved, including highly sought-after WLE.
Collapse
Affiliation(s)
- J Price
- Department of Chemistry, University of New Brunswick Fredericton New Brunswick E3B 5A3 Canada
| | - B Balónová
- Department of Chemistry, University of New Brunswick Fredericton New Brunswick E3B 5A3 Canada
| | - B A Blight
- Department of Chemistry, University of New Brunswick Fredericton New Brunswick E3B 5A3 Canada
| | - S Eisler
- Department of Chemistry, University of New Brunswick Fredericton New Brunswick E3B 5A3 Canada
| |
Collapse
|
8
|
Ganaie A, Iftikhar K. Theoretical Modeling (Sparkle RM1 and PM7) and Crystal Structures of the Luminescent Dinuclear Sm(III) and Eu(III) Complexes of 6,6,7,7,8,8,8- Heptafluoro-2,2-dimethyl-3,5-octanedione and 2,3-Bis(2-pyridyl)pyrazine: Determination of Individual Spectroscopic Parameters for Two Unique Eu 3+ Sites. ACS OMEGA 2021; 6:21207-21226. [PMID: 34471726 PMCID: PMC8387994 DOI: 10.1021/acsomega.0c05976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Heteroleptic homo dinuclear complexes [Sm(fod)3(μ-bpp)Sm(fod)3] and [Eu(fod)3(μ-bpp)Eu(fod)3] and their diamagnetic analogue [Lu(fod)3(μ-bpp)Lu(fod)3] (fod is the anion of 6,6,7,7,8,8,8- heptafluoro-2,2-dimethyl-3,5-octanedione (Hfod) and bpp is 2,3-bis(2-pyridyl)pyrazine) are synthesized and thoroughly characterized. The lanthanum gave a 1:1 adduct of La(fod)3 and bpp with the molecular formula of [La(fod)3bpp]. The 1H NMR and 1H-1H COSY spectra of the complexes were used to assign the proton resonances. In the case of paramagnetic Sm3+ and Eu3+ complexes, the methine (of the fod moiety) and the bpp resonances are shifted in the opposite direction and the paramagnetic shifts are dipolar in nature, which decrease with increasing distance of the proton from the metal ion. The single-crystal X-ray analyses reveal that the complexes (Sm3+ and Eu3+) are dinuclear and crystallize in the triclinic P1 space group. Each metal in a given complex is eight coordinate by coordinating with six oxygen atoms of three fod moieties and two nitrogen atoms of the bpp. Of the two metal centers, in a given complex, one has a distorted square antiprism arrangement and the other acquires a distorted dodecahedron geometry. The Sparkle RM1 and PM7 optimized structures of the complexes are also presented and compared with the crystal structure. Theoretically observed bond distances are in excellent agreement with the experimental values, and the RMS deviations for the optimized structures are 2.878, 2.217, 2.564, and 2.675 Å. The photophysical properties of Sm3+ and Eu3+ complexes are investigated in different solvents, solid, and PMMA-doped thin hybrid films. The spectroscopic parameters (the Judd-Ofelt intensity parameters, radiative parameters, and intrinsic quantum yield) of each Eu3+ sites are calculated using the overlap polyhedra method. The theoretically obtained parameters are close to the experimental results. The lifetime of the excited state is 38.74 μs for Sm3+ and 713.62 μs for the Eu3+ complex in the solid state.
Collapse
|
9
|
Jing H, Dan W, Zhu J, Ling Y, Jia Y, Yang Y, Liu X, Chen Z, Zhou Y. Multimetal lanthanide phosphonocarboxylate frameworks: structures, colour tuning and near-infrared emission. Dalton Trans 2021; 50:7380-7387. [PMID: 33960995 DOI: 10.1039/d1dt01052b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of isostructural lanthanide phosphonocarboxylate frameworks {(H3O)3[Ln7(pbpdc)6(DMF)4(H2O)3]·4H2O}n (named LnPCF, Ln = Tb, Eu and Gd, H4pbpdc = 4'-phosphono-[1,1'-biphenyl]-3,5-dicarboxylic acid) were solvothermally synthesized and characterized by the single crystal X-ray diffraction technique. By combining lanthanide cations with a phosphonocarboxylate ligand, a heptametallic lanthanide phosphonate [Ln7(PO3)6(COO)12] core was obtained. This core exhibited as a rare highly 18-connected node and was linked by the 3-connected pbpdc4- ligand, forming a (3,18)-connected framework with a novel topology of {43}6{438·676·839}. This LnPCF structure is an ideal platform for accommodating various lanthanide ions. The TbPCF and EuPCF show efficient luminescence emission due to the "antenna effect" and incorporating Gd3+ into the TbPCF results in a drastic luminescence enhancement. Fine colour tuning between green and red can be easily achieved in bimetallic TbxGd1-xPCFs. More significantly, upon combining a few percent of Nd3+ and Gd3+ with Tb3+, the resulting trimetallic Tb0.4Gd0.5Nd0.1PCF shows dual emissions of both visible and near-infrared light.
Collapse
Affiliation(s)
- Huiru Jing
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Wenyan Dan
- College of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiaxing Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yu Jia
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yongtai Yang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Xiaofeng Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Zhenxia Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Zheng Z, Lu H, Wang Y, Bao H, Li ZJ, Xiao GP, Lin J, Qian Y, Wang JQ. Tuning of the Network Dimensionality and Photoluminescent Properties in Homo- and Heteroleptic Lanthanide Coordination Polymers. Inorg Chem 2021; 60:1359-1366. [PMID: 33321039 DOI: 10.1021/acs.inorgchem.0c02447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeted synthesis, through a heteroleptic methodology, has resulted in three types of lanthanide (Ln) coordination polymers (CPs) with tailored dimensionality, tunable photoluminescent colors, and distinct luminescence quenching upon UV and X-ray irradiation. The homoleptic Ln(tpbz)(NO3)2 [CP-1; tpbz = 4-(2,2':6',2″-terpyridin-4'-yl)benzoate] is assembled from Ln cations and bridging tpbz ligands, accompanied by the decoration of NO3- anions, forming a one-dimensional (1D) chain structure. The presence of ancillary dicarboxylate linkers, 1,4-benzenedicarboxylate (bdc) and 2,5-thiophenedicarboxylate (tdc), promotes additional bridging between 1D chains to form a two-dimensional layer and a three-dimensional framework for Ln(tpbz)(bdc) (CP-2) and Ln(tpbz)(tdc) (CP-3), respectively. The multicolor and luminescence properties of the obtained CPs were investigated, displaying typical red EuIII-based and green TbIII-based emissions. The SmIII-bearing CP-1-CP-3, however, exhibit diverse ratiometric LnIII- and ligand-based emissions, with the photoluminescent colors varying from pink to orange to cyan. Notably, the TbIII-containing CP-1-CP-3 display distinct luminescence quenching upon continuous exposure to UV and X-ray irradiation. To our best knowledge, CP-2-Tb represents one of the most sensitive UV dosage probes (3.2 × 10-7 J) among all CPs.
Collapse
Affiliation(s)
- Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yumin Wang
- School for Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Hongliang Bao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zi-Jian Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Guo-Ping Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jian Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
11
|
Dong L, Lu YB, Zhu SD, Wu JW, Zhang XT, Liao Y, Liu CM, Liu SJ, Xie YR, Zhang SY. A new family of dinuclear lanthanide complexes exhibiting luminescence, magnetic entropy changes and single molecule magnet behaviors. CrystEngComm 2021. [DOI: 10.1039/d0ce01477j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Four isomorphic and dinuclear lanthanide complexes were synthesized. Complexes EuIII and TbIII exhibit strong emissions, while GdIII shows the magnetocaloric effect and DyIII displays a single-molecule magnet.
Collapse
|
12
|
Adcock AK, Ayscue RL, Breuer LM, Verwiel CP, Marwitz AC, Bertke JA, Vallet V, Réal F, Knope KE. Synthesis and photoluminescence of three bismuth(III)-organic compounds bearing heterocyclic N-donor ligands. Dalton Trans 2020; 49:11756-11771. [PMID: 32803206 DOI: 10.1039/d0dt02360d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three bismuth(iii)-organic compounds, [Bi4Cl8(PDC)2(phen)4]·2MeCN (1), [BiCl3(phen)2] (2), and [Bi2Cl6(terpy)2] (3), were prepared from solvothermal reactions of bismuth chloride, 2,6-pyridinedicarboxylic acid (H2PDC), and 1,10-phenanthroline (phen) or 2,2';6',2''-terpyridine (terpy). The structures were determined through single crystal X-ray diffraction and the compounds were further characterized via powder X-ray diffraction, Raman and infrared spectroscopy, and thermogravimetric analysis. The photoluminescence properties of the solid-state materials were assessed using steady state and time-dependent techniques to obtain excitation and emission profiles as well as lifetimes. The compounds exhibit visible emission ranging from the yellow-green to orange region upon UV excitation. Theoretical quantum mechanical calculations aimed at elucidating the observed emissive behavior show that the transitions can be assigned as predominantly ligand-to-ligand and ligand-to-metal charge transfer transitions. The solid-state structural chemistry, spectroscopic properties, and luminescence behavior of the bismuth compounds are presented herein.
Collapse
Affiliation(s)
- Alyssa K Adcock
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, D.C. 20057, USA.
| | - R Lee Ayscue
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, D.C. 20057, USA.
| | - Leticia M Breuer
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, D.C. 20057, USA.
| | - Chloe P Verwiel
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, D.C. 20057, USA.
| | - Alexander C Marwitz
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, D.C. 20057, USA.
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, D.C. 20057, USA.
| | - Valérie Vallet
- Université Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Florent Réal
- Université Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Karah E Knope
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, D.C. 20057, USA.
| |
Collapse
|
13
|
Dasari S, Maparu AK, Abbas Z, Kumar P, Birla H, Sivakumar S, Patra AK. Bimetallic Europium and Terbium Complexes Containing Substituted Terpyridines and the NSAID Drug Tolfenamic Acid: Structural Differences, Luminescence Properties, and Theranostic Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Srikanth Dasari
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Auhin Kumar Maparu
- Department of Chemical Engineering; Center for Environmental Science and Engineering; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Zafar Abbas
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Priyaranjan Kumar
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Hariom Birla
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Sri Sivakumar
- Department of Chemical Engineering; Center for Environmental Science and Engineering; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Ashis K. Patra
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| |
Collapse
|
14
|
Abbas Z, Singh P, Dasari S, Sivakumar S, Patra AK. Luminescent EuIIIand TbIIIbimetallic complexes of N,N′-heterocyclic bases and tolfenamic acid: structures, photophysical aspects and biological activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj03261a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The isostructural bimetallic luminescent EuIIIand TbIIIdimers containing N,N′-heterocyclic bases and tolfenamic acid as a bridging ligands were evaluated for their structures, cellular imaging capability and photocytotoxicity.
Collapse
Affiliation(s)
- Zafar Abbas
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Prerana Singh
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
- Department of Biological Sciences and Bioengineering
| | - Srikanth Dasari
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sri Sivakumar
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|