1
|
Song YJ, Ren SY, Zuo S, Shi ZQ, Li Z, Li G. Tailored Porous Ferrocene-Based Metal-Organic Frameworks as High-Performance Proton Conductors. Inorg Chem 2024; 63:8194-8205. [PMID: 38639416 DOI: 10.1021/acs.inorgchem.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Although crystalline metal-organic frameworks (MOFs) have gained a great deal of interest in the field of proton conduction in recent years, the low stability and poor proton conductivity (σ) of some MOFs have hindered their future applications. As a result, resolving the issues listed above must be prioritized. Due to their exceptional structural stability, MOFs with ferrocene groups that exhibit particular physical and chemical properties have drawn a lot of attention. This study describes the effective preparation of a set of three-dimensional ferrocene-based MOFs, MIL-53-FcDC-Al/Ga and CAU-43, containing both main group metals and 1,1'-ferrocene dicarboxylic acid (H2FcDC). Multiple measurements, including powder X-ray diffraction (PXRD), infrared (IR), and scanning electron microscopy (SEM), confirmed that the addition of ferrocene groups enhanced the thermal, water, and acid-base stabilities of the three MOFs. Consequently, their proton-conductive behaviors were meticulously measured utilizing the AC impedance approach, and their best proton conductivities are 5.20 × 10-3, 2.31 × 10-3, and 1.72 × 10-4 S/cm at 100 °C/98% relative humidity (RH), respectively. Excitingly, MIL-53-FcDC-Al/Ga demonstrated an extraordinarily ultrahigh σ of above 10-4 S·cm-1 under 30 °C/98% RH. Using data from structural analysis, PXRD, SEM, thermogravimetry (TG), and activation energy, their proton transport mechanisms were thoroughly examined. The fact that these MOFs are notably easy to assemble, inexpensive, toxin-free, and stable will increase the range of practical uses for them.
Collapse
Affiliation(s)
- Yong-Jie Song
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Si-Yuan Ren
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Shuaiwu Zuo
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Zifeng Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
2
|
Jain C, Kushwaha R, Rase D, Shekhar P, Shelke A, Sonwani D, Ajithkumar TG, Vinod CP, Vaidhyanathan R. Tailoring COFs: Transforming Nonconducting 2D Layered COF into a Conducting Quasi-3D Architecture via Interlayer Knitting with Polypyrrole. J Am Chem Soc 2024; 146:487-499. [PMID: 38157305 DOI: 10.1021/jacs.3c09937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Improving the electronic conductivity and the structural robustness of covalent organic frameworks (COFs) is paramount. Here, we covalently cross-link a 2D COF with polypyrrole (Ppy) chains to form a quasi-3D COF. The 3D COF shows well-defined reflections in the SAED patterns distinctly indexed to its modeled crystal structure. This knitting of 2D COF layers with conjugated polypyrrole units improves electronic conductivity from 10-9 to 10-2 S m-1. This conductivity boost is affirmed by the presence of density of states near the Fermi level in the 3D COF, and this elevates the COF's valence band maximum by 0.52 eV with respect to the parent 2D pyrrole-functionalized COF, which agrees well with the opto-electro band gaps. The extent of HOMO elevation suggests the predominant existence of a polaron state (radical cation), giving rise to a strong EPR signal, most likely sourced from the cross-linking polypyrrole chains. A supercapacitor devised with COF20-Ppy records a high areal capacitance of 377.6 mF cm-2, higher than that of the COF loaded with noncovalently linked polypyrrole chains. Thus, the polypyrrole acts as a "conjugation bridge" across the layers, lowering the band gap and providing polarons and additional conduction pathways. This marks a far-reaching approach to converting many 2D COFs into highly ordered and conducting 3D ones.
Collapse
Affiliation(s)
| | | | | | | | - Ankita Shelke
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | | | - Thalasseril G Ajithkumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | | | | |
Collapse
|
3
|
Nwokonkwo O, Pelletier V, Broud M, Muhich C. Functionalized Ferrocene Enables Selective Electrosorption of Arsenic Oxyanions over Phosphate─A DFT Examination of the Effects of Substitutional Moieties, pH, and Oxidation State. J Phys Chem A 2023; 127:7727-7738. [PMID: 37682592 PMCID: PMC10530435 DOI: 10.1021/acs.jpca.3c03826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Ferrocene (Fc)/ferrocenium (Fc+)-decorated carbon nanotube electrode materials have shown promise for selectively adsorbing arsenic (As) over dissimilar anions like Cl- and ClO4-, and isostructural transition-metal oxyanions for water remediation; however, the competition between same-group oxyanions (such as arsenate vs phosphate) is underexplored and poorly understood. We use ab initio calculations to examine the competitive binding of As(V), P(V), and As(III) to Fc/Fc+ with and without functional substitutions (OH, SH, NH2, COOH, CH3, C2H5, NO2, and Cl). This work aims to understand factors that induce the selective binding of toxic arsenic over phosphate. We find that neat Fc cannot distinguish the three oxyanions because physical forces (electrostatics and dispersion) dominate the Fc-oxyanion interactions. However, combined oxidation and substitution effects enable selectivity for As(V) over P(V). Oxidation of Fc to Fc+ allows the formation of Fc+-oxyanion covalent bonds with varying donor-acceptor character depending on the oxyanion. Additionally, NH2 and SH groups that donate charge to the base Fc+ molecule and H-bond to oxyanion induce an energetic preference for As(V) over P(V) by -0.23 and -0.13 eV, respectively. Differences in pKa between As(V)/P(V) and As(III) preclude any preference for As(III) over the other anions. Using the calculated energetics, we predict the pH-dependent binding selectivity of functionalized ferrocenium. These findings demonstrate the challenges of Fc/Fc+-oxyanion interaction for selective binding and provide a path for identifying other molecules and substituents for efficient metallocene adsorbent design.
Collapse
Affiliation(s)
- Obinna Nwokonkwo
- Chemical Engineering, School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States of America
| | - Vivienne Pelletier
- Materials Science & Engineering, School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States of America
| | - Michael Broud
- Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States of America
| | - Christopher Muhich
- Chemical Engineering, School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States of America
- Materials Science & Engineering, School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States of America
| |
Collapse
|
4
|
Chang Y, Chen Y, Wu M, Liu L, Song Q. Electrochemical detection of glycoproteins using boronic acid-modified metal-organic frameworks as dual-functional signal reporters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4452-4458. [PMID: 37641924 DOI: 10.1039/d3ay01164j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The sensitive analysis of glycoproteins is of great importance for early diagnosis and prognosis of diseases. In this work, a sandwich-type electrochemical aptasensor was developed for the detection of glycoproteins using 4-formylphenylboric acid (FPBA)-modified Cu-based metal-organic frameworks (FPBA-Cu-MOFs) as dual-functional signal probes. The target captured by the aptamer-modified electrode allowed the attachment of FPBA-Cu-MOFs based on the interaction between boronic acid and glycan on glycoproteins. Large numbers of Cu2+ ions in FPBA-Cu-MOFs produced an amplified signal for the direct voltammetric detection of glycoproteins. The electrochemical aptasensor showed a detection limit as low as 6.5 pg mL-1 for prostate specific antigen detection. The method obviates the use of antibody and enzymes for molecular recognition and signal output. The dual-functional MOFs can be extended to the design of other biosensors for the determination of diol-containing biomolecules in clinical diagnosis.
Collapse
Affiliation(s)
- Yong Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Jiangsu 214122, P. R. China.
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Yixuan Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Mian Wu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Jiangsu 214122, P. R. China.
| |
Collapse
|
5
|
Chang Y, Liu G, Li S, Liu L, Song Q. Biorecognition element-free electrochemical detection of recombinant glycoproteins using metal-organic frameworks as signal tags. Anal Chim Acta 2023; 1273:341540. [PMID: 37423655 DOI: 10.1016/j.aca.2023.341540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
Accurate and sensitive determination of recombinant glycoproteins is in great demand for the treatment of anemia-induced chronic kidney disease and the illegal use of doping agents in sports. In this study, an antibody and enzyme-free electrochemical method for the detection of recombinant glycoproteins was proposed via the sequential chemical recognition of hexahistidine (His6) tag and glycan residue on the target protein under the cooperation interaction of nitrilotriacetic acid (NTA)-Ni2+complex and boronic acid, respectively. Specifically, NTA-Ni2+ complex-modified magnetic beads (MBs-NTA-Ni2+) are employed to selectively capture the recombinant glycoprotein through the coordination interaction between His6 tag and NTA-Ni2+ complex. Then, boronic acid-modified Cu-based metal-organic frameworks (Cu-MOFs) were recruited by glycans on the glycoprotein via the formation of reversible boronate ester bonds. MOFs with abundant Cu2+ ions acted as efficient electroactive labels to directly produce amplified electrochemical signals. By using recombinant human erythropoietin as a model analyte, this method showed a wide linear detection range from 0.01 to 50 ng/mL and a low detection limit of 5.3 pg/mL. With the benefits from the simple operation and low cost, the stepwise chemical recognition-based method shows great promise in the determination of recombinant glycoproteins in the fields of biopharmaceutical research, anti-doping analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yong Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China; College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
6
|
Xiong XH, Zhang L, Wang W, Zhu NX, Qin LZ, Huang HF, Meng LL, Xiong YY, Barboiu M, Fenske D, Hu P, Wei ZW. Nitro-Decorated Microporous Covalent Organic Framework (TpPa-NO 2) for Selective Separation of C 2H 4 from a C 2H 2/C 2H 4/CO 2 Mixture and CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32105-32111. [PMID: 35791739 DOI: 10.1021/acsami.2c08338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A nitro-decorated microporous covalent organic framework, TpPa-NO2, has been synthesized in a gram scale with a one-pot reaction. It can effectively selectively separate C2H4 from a C2H2/C2H4/CO2 mixture and capture CO2 from CO2/N2 based on ideal adsorption solution theory calculations and transient breakthrough experiments. Theoretical calculations illustrated that the hydrogen atoms of imine bonds, carbonyl oxygen, and nitro group show high affinity toward C2H2 and CO2, playing vital roles in efficient separation.
Collapse
Affiliation(s)
- Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liang Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Neng-Xiu Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lu-Zhu Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huan-Feng Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liu-Li Meng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yang-Yang Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mihail Barboiu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes (IEM), University of Montpellier, Montpellier 34000, France
| | - Dieter Fenske
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Peng Hu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Zhao L, Du Z, Ji G, Wang Y, Cai W, He C, Duan C. Eosin Y-Containing Metal-Organic Framework as a Heterogeneous Catalyst for Direct Photoactivation of Inert C-H Bonds. Inorg Chem 2022; 61:7256-7265. [PMID: 35507831 DOI: 10.1021/acs.inorgchem.1c03813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xanthene dyes as a class of ideal organic homogeneous photocatalyst have received significant attention in C-H bond activation; however, the inherent nature of fast carrier recombination/deactivation and low stability limits their practical applications. Herein, by the ingenious decoration of eosin Y into a porous metal-organic framework (MOF), a high-performance heterogeneous MOF-based photocatalyst was prepared to efficiently activate inert C-H bonds on the reactants via the hydrogen atom transfer pathway for the functionalization of the C-H bonds. Taking advantage of the fixation effect of a rigid framework, the incorporation of eosin Y into MOF leads to great enhancement of their chemical durability. More importantly, by the introduction of the second auxiliary ligand, the carbonyl groups of xanthene on the eosin Y dyes were perfectly retained and periodically aligned within the confined channels of this rigid framework, which could effectively form excited state radicals to prompt inert C-H bond activation, promoting reaction efficiency by the host-guest supramolecular interaction. New eosin Y-based MOFs were recyclable for six times without reducing photocatalytic activity. This eosin Y functionalized MOF-based heterogeneous photocatalytic system provides an availably catalytic avenue to develop a scalable and sustainable synthetic strategy for the practical application of organic dyes.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yefei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
8
|
|
9
|
Crystal structures and magnetic properties of two Co(II) coordination polymers created via in situ ligand synthesis. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|