1
|
Low pH-induced lone-pair activity in the hybrid (C6H10N2)[SnCl3]Cl: Chemical study and physical characterizations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
Brune V, Raydan N, Sutorius A, Hartl F, Purohit B, Gahlot S, Bargiela P, Burel L, Wilhelm M, Hegemann C, Atamtürk U, Mathur S, Mishra S. Single source precursor route to nanometric tin chalcogenides. Dalton Trans 2021; 50:17346-17360. [PMID: 34788778 DOI: 10.1039/d1dt02964a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Low-temperature solution phase synthesis of nanomaterials using designed molecular precursors enjoys tremendous advantages over traditional high-temperature solid-state synthesis. These include atomic-level control over stoichiometry, homogeneous elemental dispersion and uniformly distributed nanoparticles. For exploiting these advantages, however, rationally designed molecular complexes having certain properties are usually required. We report here the synthesis and complete characterization of new molecular precursors containing direct Sn-E bonds (E = S or Se), which undergo facile decomposition under different conditions (solid/solution phase, thermal/microwave heating, single/mixed solvents, varying temperatures, etc.) to afford phase-pure or mixed-phase tin chalcogenide nanoflakes with defined ratios.
Collapse
Affiliation(s)
- Veronika Brune
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Nidal Raydan
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| | - Anja Sutorius
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Fabian Hartl
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Bhagyesh Purohit
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| | - Sweta Gahlot
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| | - Pascal Bargiela
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| | - Laurence Burel
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| | - Michael Wilhelm
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Corinna Hegemann
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Ufuk Atamtürk
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Sanjay Mathur
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Shashank Mishra
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
3
|
Parish JD, Snook MW, Johnson AL. Evaluation of Sn(II) aminoalkoxide precursors for atomic layer deposition of SnO thin films. Dalton Trans 2021; 50:13902-13914. [PMID: 34528045 DOI: 10.1039/d1dt02480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have successfully prepared and structurally characterized a family of eight tin(II) heteroleptic complexes, [Sn(NR2)(ON)]x (NR2 = NMe2 (1a-d) or N(SiMe3)2 (2a-d); x = 1 or 2) and four homoleptic systems, [Sn(κ2-ON)2] (3a-d) from a series of aminoalcohols and fluorinated aminoalcohols (H{ON}) having a different number of methyl/trifluoromethyl substituents at the α-carbon atom, [HOC(R1)(R2)CH2NMe2] (R1 = R2 = H (H{dmae}) (a); R1 = H, R2 = Me (H{dmap}) (b); R1 = R2 = Me (H{dmamp}) (c); R1 = R2 = CF3 (H{Fdmamp}) (d)). The synthetic route used reactions of either [Sn{N(SiMe3)2}2] or [Sn(NMe2)2] with one or two equivalents of the aminoalcohols (a-d) in dry aprotic solvents leading to elimination of amines and formation of the Sn(II) species 1a-d, 2a-d and 3a-d respectively. All complexes were thoroughly characterized by NMR spectroscopy (1H, 13C, 19F, and 119Sn) as well as single-crystal X-ray diffraction studies. In all case the solid state molecular structures of the complexes have been unambiguously established: the solid state structures 1a-b and 1c are dimeric with central {Sn2N2} cores resulting from bridging {μ2-NMe2} units, in which the Sn(II) atoms are four-coordinate. In contrast, the solid state structures of complexes 1c and 2a-c possess similarly dimeric structures, with four-coordinate Sn(II) atoms, in which the oxygen atoms of the {ON} ligand bridge two Sn(II) centres to form dimers with a central {Sn2O2} core. Uniquely in this study, 2d, [Sn(κ2-O,N-OCMe2CH2NMe2){N(SiMe3)2}] is monomeric with a three coordinate Sn(II) centre. The homoleptic complexes 3a-d are all isostructural with monomeric four-coordinate structures with disphenoidal geometries. Solution state NMR studies reveal complicated ligand exchange processes in the case of the heteroleptic complexes 1a-d and 2a-d. Contrastingly, the homoleptic systems 3a-d show no such behaviour. While complexes 1a-d and 2a-d displayed either poor thermal stability or multistep thermal decomposition processes, the thermal behaviour of the homoleptic complexes, 3a-d, was investigated in order to determine the effects, if any, of the degree of fluorination and asymmetry of the aminoalkoxide ligands on the suitability of these complexes as ALD precursors for the deposition of SnO thin films.
Collapse
Affiliation(s)
- James D Parish
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| | - Michael W Snook
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| | - Andrew L Johnson
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
4
|
Huang PH, Zhang ZX, Hsu CH, Wu WY, Huang CJ, Lien SY. Chemical Reaction and Ion Bombardment Effects of Plasma Radicals on Optoelectrical Properties of SnO 2 Thin Films via Atomic Layer Deposition. MATERIALS 2021; 14:ma14030690. [PMID: 33540775 PMCID: PMC7867222 DOI: 10.3390/ma14030690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022]
Abstract
In this study, the effect of radical intensity on the deposition mechanism, optical, and electrical properties of tin oxide (SnO2) thin films is investigated. The SnO2 thin films are prepared by plasma-enhanced atomic layer deposition with different plasma power from 1000 to 3000 W. The experimental results show that plasma contains different amount of argon radicals (Ar*) and oxygen radicals (O*) with the increased power. The three deposition mechanisms are indicated by the variation of Ar* and O* intensities evidenced by optical emission spectroscopy. The adequate intensities of Ar* and O* are obtained by the power of 1500 W, inducing the highest oxygen vacancies (OV) ratio, the narrowest band gap, and the densest film structure. The refractive index and optical loss increase with the plasma power, possibly owing to the increased film density. According to the Hall effect measurement results, the improved plasma power from 1000 to 1500 W enhances the carrier concentration due to the enlargement of OV ratio, while the plasma powers higher than 1500 W further cause the removal of OV and the significant bombardment from Ar*, leading to the increase of resistivity.
Collapse
Affiliation(s)
- Pao-Hsun Huang
- School of Information Engineering, Jimei University, Jimei District, Xiamen 361021, China;
| | - Zhi-Xuan Zhang
- School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China; (Z.-X.Z.); (C.-H.H.)
| | - Chia-Hsun Hsu
- School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China; (Z.-X.Z.); (C.-H.H.)
| | - Wan-Yu Wu
- Department of Materials Science and Engineering, Da-Yeh University, Dacun, Changhua 51591, Taiwan;
| | - Chien-Jung Huang
- Department of Applied Physics, National University of Kaohsiung, Kaohsiung University Road, Kaohsiung 81148, Taiwan
- Correspondence: (C.-J.H.); (S.-Y.L.)
| | - Shui-Yang Lien
- School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China; (Z.-X.Z.); (C.-H.H.)
- Department of Materials Science and Engineering, Da-Yeh University, Dacun, Changhua 51591, Taiwan;
- Fujian Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
- Correspondence: (C.-J.H.); (S.-Y.L.)
| |
Collapse
|
5
|
Neto ADBS, Alves da Cruz MG, Jeanneau E, Oliveira AC, Essayem N, Mishra S. Designed sol–gel precursors for atomically dispersed Nb and Pb within TiO2 as catalysts for dihydroxyacetone transformation. Dalton Trans 2021; 50:1604-1609. [DOI: 10.1039/d0dt03726e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
New N-methyldiethanolamine-modified metal alkoxides were synthesized and employed as sol–gel precursors to obtain atomically dispersed catalysts with high surface area and tunable acid–base properties.
Collapse
Affiliation(s)
- Antonio de Brito Santiago Neto
- Université Claude Bernard Lyon 1
- CNRS
- UMR 5256
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON)
- 69626 Villeurbanne
| | - Márcia Gabriely Alves da Cruz
- Université Claude Bernard Lyon 1
- CNRS
- UMR 5256
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON)
- 69626 Villeurbanne
| | - Erwann Jeanneau
- Université Claude Bernard Lyon 1
- Centre de Diffractométrie Henri Longchambon
- 69100 Villeurbanne
- France
| | - Alcineia Conceição Oliveira
- Universidade Federal do Ceará
- Campus do Pici-Bloco 940
- Departamento de Química Analítica e Fisioquímica
- 60.000.000 Fortaleza
- Brazil
| | - Nadine Essayem
- Université Claude Bernard Lyon 1
- CNRS
- UMR 5256
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON)
- 69626 Villeurbanne
| | - Shashank Mishra
- Université Claude Bernard Lyon 1
- CNRS
- UMR 5256
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON)
- 69626 Villeurbanne
| |
Collapse
|
6
|
Wang M, Chen T, Liao T, Zhang X, Zhu B, Tang H, Dai C. Tin dioxide-based nanomaterials as anodes for lithium-ion batteries. RSC Adv 2020; 11:1200-1221. [PMID: 35423690 PMCID: PMC8693589 DOI: 10.1039/d0ra10194j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The development of new electrode materials for lithium-ion batteries (LIBs) has attracted significant attention because commercial anode materials in LIBs, like graphite, may not be able to meet the increasing energy demand of new electronic devices. Tin dioxide (SnO2) is considered as a promising alternative to graphite due to its high specific capacity. However, the large volume changes of SnO2 during the lithiation/delithiation process lead to capacity fading and poor cycling performance. In this review, we have summarized the synthesis of SnO2-based nanomaterials with various structures and chemical compositions, and their electrochemical performance as LIB anodes. This review addresses pure SnO2 nanomaterials, the composites of SnO2 and carbonaceous materials, the composites of SnO2 and transition metal oxides, and other hybrid SnO2-based materials. By providing a discussion on the synthesis methods and electrochemistry of some representative SnO2-based nanomaterials, we aim to demonstrate that electrochemical properties can be significantly improved by modifying chemical composition and morphology. By analyzing and summarizing the recent progress in SnO2 anode materials, we hope to show that there is still a long way to go for SnO2 to become a commercial LIB electrode and more research has to be focused on how to enhance the cycling stability.
Collapse
Affiliation(s)
- Minkang Wang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Tianrui Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 P. R. China
| | - Tianhao Liao
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Xinglong Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Bin Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Changsong Dai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
7
|
Krisyuk VV, kyzy SU, Rybalova TV, Korolkov IV, Sysoev SV, Koretskaya TP, Kuchumov BM, Turgambaeva AE. Volatile trinuclear heterometallic beta-diketonates: Structure and thermal properties related to the chemical vapor deposition of composite thin films. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Elinburg JK, Hyre AS, McNeely J, Alam TM, Klenner S, Pöttgen R, Rheingold AL, Doerrer LH. Formation of monomeric Sn(ii) and Sn(iv) perfluoropinacolate complexes and their characterization by 119Sn Mössbauer and 119Sn NMR spectroscopies. Dalton Trans 2020; 49:13773-13785. [PMID: 33000834 DOI: 10.1039/d0dt02837a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of a series of Sn(ii) and Sn(iv) complexes supported by the highly electron-withdrawing dianionic perfluoropinacolate (pinF) ligand are reported herein. Three analogs of [SnIV(pinF)3]2- with NEt3H+ (1), K+ (2), and {K(18C6)}+ (3) counter cations and two analogs of [SnII(pinF)2]2- with K+ (4) and {K(15C5)2}+ (5) counter cations were prepared and characterized by standard analytical methods, single-crystal X-ray diffraction, and 119Sn Mössbauer and NMR spectroscopies. The six-coordinate SnIV(pinF) complexes display 119Sn NMR resonances and 119Sn Mössbauer spectra similar to SnO2 (cassiterite). In contrast, the four-coordinate SnII(pinF) complexes, featuring a stereochemically-active lone pair, possess low 119Sn NMR chemical shifts and relatively high quadrupolar splitting. Furthermore, the Sn(ii) complexes are unreactive towards both Lewis bases (pyridine, NEt3) and acids (BX3, Et3NH+). Calculations confirm that the Sn(ii) lone pair is localized within the 5s orbital and reveal that the Sn 5px LUMO is energetically inaccessible, which effectively abates reactivity.
Collapse
Affiliation(s)
- Jessica K Elinburg
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mishra S, Daniele S. Molecular Engineering of Metal Alkoxides for Solution Phase Synthesis of High-Tech Metal Oxide Nanomaterials. Chemistry 2020; 26:9292-9303. [PMID: 32427371 DOI: 10.1002/chem.202000534] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 01/22/2023]
Abstract
The 'bottom-up' synthesis of inorganic nanomaterials with precision at the atomic/molecular level offers many opportunities for the design and improvement of the nanomaterials for various applications. Molecular engineering during soft chemical processing for the synthesis of functional nanomaterials enables the desired chemical and physical properties of the precursors, such as solubility or volatility, clean decomposition, control of stoichiometry for multimetallic species to name a few, and leads to easy control of uniform particle size distribution, stoichiometry…. This Minireview illustrates some important aspects of the molecular engineering in light of some recent developments from the molecular synthesis of nanomaterials involving non-silicon metal alkoxide systems for high-tech applications.
Collapse
Affiliation(s)
- Shashank Mishra
- CNRS, IRCELYON, UMR 5256, Univ Lyon, Université Claude Bernard Lyon 1, 2 avenue Albert Einstein, 69626, Villeurbanne, France
| | - Stéphane Daniele
- C2P2-UMR 5265, ESCPE-Lyon, BP 2077, Univ Lyon, Université Claude Bernard Lyon 1, 69616, Villeurbanne, France
| |
Collapse
|