1
|
Zhao X, Bai L, Li J, Jiang X. Photouranium-Catalyzed C-F Activation Hydroxylation via Water Splitting. J Am Chem Soc 2024. [PMID: 38593178 DOI: 10.1021/jacs.3c13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The C-F bond is the strongest covalent single bond (126 kcal/mol) in carbon-centered bonds, in which the highest electronegativity of fluorine (χ = 4) gives rise to the shortest bond length (1.38 Å) and the smallest van der Waals radius (rw = 1.47 Å), resulting in enormous challenges for activation and transformation. Herein, C-F conversion was realized via photouranium-catalyzed hydroxylation of unactivated aryl fluorides using water as a hydroxyl source to deliver multifunctional phenols under ambient conditions. The activation featured cascade sequences of single electron transfer (SET)/hydrogen atom transfer (HAT)/oxygen atom transfer (OAT), highly integrated from the excited uranyl cation. The *UO22+ prompted water splitting under mild photoexcitation, caging the active oxygen in a peroxo-bridged manner for the critical OAT process and releasing hydrogen via the HAT process.
Collapse
Affiliation(s)
- Xiu Zhao
- Hainan Institute of East China Normal University, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China
| | - Leiyang Bai
- Hainan Institute of East China Normal University, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xuefeng Jiang
- Hainan Institute of East China Normal University, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| |
Collapse
|
2
|
Xiao J. Catalyzing photo-degradation of waste plastics with a uranium complex. Sci Bull (Beijing) 2023; 68:2498-2499. [PMID: 37716850 DOI: 10.1016/j.scib.2023.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Affiliation(s)
- Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
| |
Collapse
|
3
|
Meng J, Zhou Y, Li D, Jiang X. Degradation of plastic wastes to commercial chemicals and monomers under visible light. Sci Bull (Beijing) 2023:S2095-9273(23)00407-3. [PMID: 37423865 DOI: 10.1016/j.scib.2023.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
Plastics are playing an incrementally extensive and irreplaceable role in human life, but with alarming cyclic unsustainability. Numerous attempts have been undertaken to recycle plastics, among which chemical recycling from waste plastics back to chemicals and monomers has attracted great attention. Herein, the depolymerization of nine types of plastics to commercial chemicals and monomers was achieved under ambient conditions via synergetic integrated uranyl-photocatalysis, which contains a process for converting five kinds of mixed plastics into a value-added product. The degradation processes were depicted in terms of variation in scanning electron microscopy imaging, distinction in the X-ray diffraction pattern, alteration in water contact angle, and dynamic in molecular weight distribution. Single electron transfer, hydrogen atom transfer, and oxygen atom transfer were synergistically involved in uranyl-photocatalysis, which were substantiated by mechanistic studies. Relying on flow system design, the chemical recycling of plastics was feasible for kilogram-scale degradation of post-consumer-waste polyethylene terephthalate bottles to commercial chemicals, displaying a promising practical application potential in the future.
Collapse
Affiliation(s)
- Jiaolong Meng
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yilin Zhou
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xuefeng Jiang
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
Zhou Y, Hu D, Li D, Jiang X. Uranyl-Photocatalyzed Hydrolysis of Diaryl Ethers at Ambient Environment for the Directional Degradation of 4-O-5 Lignin. JACS AU 2021; 1:1141-1146. [PMID: 34467354 PMCID: PMC8397364 DOI: 10.1021/jacsau.1c00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Uranyl-photocatalyzed hydrolysis of diaryl ethers has been established to achieve two types of phenols at room temperature under normal pressure. The single electron transfer process was disclosed by a radical quenching experiment and Stern-Volmer analysis between diphenyl ether and uranyl cation catalyst, followed by oxygen atom transfer process between radical cation of diphenyl ether and uranyl peroxide species. The 18O-labeling experiment precisely demonstrates that the oxygen source is water. Further application in template substrates of 4-O-5 linkages from lignin and 30-fold efficiency of flow operation display the potential application for phenol recovery via an ecofriendly and low-energy consumption protocol.
Collapse
Affiliation(s)
- Yilin Zhou
- Shanghai Key Laboratory of Green Chemistry
and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Deqing Hu
- Shanghai Key Laboratory of Green Chemistry
and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Daoji Li
- State
Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry
and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
- State
Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
5
|
Hu D, Zhou Y, Jiang X. From aniline to phenol: carbon-nitrogen bond activation via uranyl photoredox catalysis. Natl Sci Rev 2021; 9:nwab156. [PMID: 35854944 PMCID: PMC9283103 DOI: 10.1093/nsr/nwab156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Carbon-nitrogen bond activation, via uranyl photoredox catalysis with water, enabled the conversion of 40 protogenetic anilines, 8 N-substituted anilines and 9 aniline-containing natural products/pharmaceuticals to the corresponding phenols in an ambient environment. A single-electron transfer process between a protonated aniline and uranyl catalyst, which was disclosed by radical quenching experiments and Stern-Volmer analysis, facilitated the following oxygen atom transfer process between the radical cation of protonated anilines and uranyl peroxide originating from water-splitting. 18O labeling and 15N tracking unambiguously depicted that the oxygen came from water and amino group left as ammonium salt. The 100-fold efficiency of the flow operation demonstrated the great potential of the conversion process for industrial synthetic application.
Collapse
Affiliation(s)
- Deqing Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yilin Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Tong X, Wang S, Zuo J, Ge Y, Gao Q, Liu S, Ding J, Liu F, Luo J, Xiong J. Two 2D uranyl coordination complexes showing effective photocatalytic degradation of Rhodamine B and mechanism study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|