1
|
Musa S, Peretz Y, Dinnar G. Advances in Chiral Pincer Complexes: Insights and Applications in Catalytic Asymmetric Reactions. Int J Mol Sci 2024; 25:10344. [PMID: 39408673 PMCID: PMC11482493 DOI: 10.3390/ijms251910344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Chiral pincer complexes, characterized by their rigid tridentate coordination framework, have emerged as powerful catalysts in asymmetric synthesis. This review provides a comprehensive overview of recent advancements in the development of chiral pincer-type ligands and their corresponding transition metal complexes. We highlight the latest progress in their application across a range of catalytic asymmetric reactions, including the (transfer) hydrogenation of polar and non-polar bonds, hydrophosphination, alkynylation, Friedel-Crafts reactions, enantioselective reductive cyclization of alkynyl-tethered cyclohexadienones, enantioselective hydrosilylation, as well as Aza-Morita-Baylis-Hillman reactions. The structural rigidity and tunability of chiral pincer complexes enable precise control over stereoselectivity, resulting in high enantioselectivity and efficiency in complex molecular transformations. As the field advances, innovations in ligand design and the exploration of new metal centers are expected to expand the scope and utility of these catalysts, bearing significant implications for the synthesis of enantioenriched compounds in pharmaceuticals, materials science, and beyond.
Collapse
Affiliation(s)
- Sanaa Musa
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11016, Israel
| | - Yuval Peretz
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Gil Dinnar
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11016, Israel
| |
Collapse
|
2
|
Poli R. A new classification for the ever-expanding mechanistic landscape of catalyzed hydrogenations, dehydrogenations and transfer hydrogenations. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
3
|
The Origin of Stereoselectivity in the Hydrogenation of Oximes Catalyzed by Iridium Complexes: A DFT Mechanistic Study. Molecules 2022; 27:molecules27238349. [PMID: 36500448 PMCID: PMC9737400 DOI: 10.3390/molecules27238349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Herein the reaction mechanism and the origin of stereoselectivity of asymmetric hydrogenation of oximes to hydroxylamines catalyzed by the cyclometalated iridium (III) complexes with chiral substituted single cyclopentadienyl ligands (Ir catalysts A1 and B1) under acidic condition were unveiled using DFT calculations. The catalytic cycle for this reaction consists of the dihydrogen activation step and the hydride transfer step. The calculated results indicate that the hydride transfer step is the chirality-determining step and the involvement of methanesulfonate anion (MsO-) in this reaction is of importance in the asymmetric hydrogenation of oximes catalyzed by A1 and B1. The calculated energy barriers for the hydride transfer steps without an MsO- anion are higher than those with an MsO- anion. The differences in Gibbs free energies between TSA5-1fR/TSA5-1fS and TSB5-1fR/TSB5-1fS are 13.8/13.2 (ΔΔG‡ = 0.6 kcal/mol) and 7.5/5.6 (ΔΔG‡ = 1.9 kcal/mol) kcal/mol for the hydride transfer step of substrate protonated oximes with E configuration (E-2a-H+) with MsO- anion to chiral hydroxylamines product R-3a/S-3a catalyzed by A1 and B1, respectively. According to the Curtin-Hammet principle, the major products are hydroxylamines S-3a for the reaction catalyzed by A1 and B1, which agrees well with the experimental results. This is due to the non-covalent interactions among the protonated substrate, MsO- anion and catalytic species. The hydrogen bond could not only stabilize the catalytic species, but also change the preference of stereoselectivity of this reaction.
Collapse
|
4
|
Wang H, Shi F, Pu M, Lei M. Theoretical Study on Nitrobenzene Hydrogenation by N-Doped Carbon-Supported Late Transition Metal Single-Atom Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haohao Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Liu X, Shi F, Jin C, Liu B, Lei M, Tan J. Stereospecific synthesis of monofluoroalkenes and their deuterated analogues via Ag-catalyzed decarboxylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Zhao Y, Zhang L, Tang Y, Pu M, Lei M. A theoretical study of asymmetric ketone hydrogenation catalyzed by Mn complexes: from the catalytic mechanism to the catalyst design. Phys Chem Chem Phys 2022; 24:13365-13375. [PMID: 35608221 DOI: 10.1039/d2cp00818a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a density functional theory (DFT) study was performed to investigate asymmetric ketone hydrogenation (AKH) catalyzed by Mn complexes, from the catalytic mechanism to the catalyst design. The calculated results indicated that the Mn(CO)2-PSiNSiP (A1, PSiNSiP = P(Ph)2Si(CH3)2NSi(CH3)2P(Ph)2) pincer complex has potential high catalytic activity for ketone hydrogenation. The Mn(CO)-LYB (B, LYB = P(Ph)2Si(CH3)2NSi(CH3)2P(Me)2) pincer complex was then designed to catalyze AKH with good stereoselectivity. The hydrogen transfer (HT) step is the chirality-determining step. To avoid the enantiomer of Mn(CO)2-LYB, which could eliminate the high stereoselectivity during AKH, novel Mn complexes with quadridentate ligands, such as Mn(CO)-LYC (C, LYC = P(CH3)2CH2Si(CH3)NSi(CH3)(Si(CH3)CH2P(CH3)2)CH2P(Ph)2) and Mn(CO)-LYD (D, LYD = P(CH3)2CH2Si(CH3)NSi(CH3)(Si(CH3)CH2P(CH3)2)CH2P(Cy)2), were designed to drive AKH with medium stereoselectivity. In order to increase the stereoselectivity of AKH, Mn(CO)-LYE (E, LYE = PH2CH2Si(CH3)NSi(CH3)(Si(CH3)CH2P(CH3)2)CH2P(Ph)2) and Mn(CO)-LYF (F, LYF = PH2CH2Si(CH3)NSi(CH3)(Si(CH3)CH2P(CH3)2)CH2P(Cy)2) were further designed and showed very good stereoselectivity, which is due to the lower deformation energy and stronger interactions between the ketone substrates and catalysts. This work may shed light on the design of cheap metal catalysts with a new ligand framework for the asymmetric hydrogenation (AH) of CX bonds (X = O, N).
Collapse
Affiliation(s)
- Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yanhui Tang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China. .,School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, P. R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
7
|
Kirchhoff JL, Brieger L, Strohmann C. Crystal structure and Hirshfeld surface analysis of ( S)- N-methyl-1-phenyl-ethan-1-aminium chloride. Acta Crystallogr E Crystallogr Commun 2022; 78:130-134. [PMID: 35145738 PMCID: PMC8819438 DOI: 10.1107/s2056989021013645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 12/03/2022]
Abstract
The title compound C9H14N+·Cl-, (1), can be synthesized starting from (S)-N-methyl-1-phenyl-ethan-1-amine (2). Compound 2 upon addition of HCl·Et2O leads to crystallization of compound 1 as colorless blocks. The configuration of compound 1 is stable as well as preserved in space group P212121. Ammonium chlorides, like the title compound, are often observed as undesirable by-products in amino-silylation of chloro-silanes. Additionally, these by-products are usually soluble in selected organic solvents, which require difficult separation steps. Therefore, detailed studies on structural features and inter-molecular inter-actions performed by Hirshfeld atom refinement (HAR) using NoSpherA2 [Kleemiss et al. (2021 ▸). Chem. Sci. 12, 1675-1692] and Hirshfeld surface analysis were used to address structural issues on that separation problem.
Collapse
Affiliation(s)
- Jan-Lukas Kirchhoff
- Technische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Lukas Brieger
- Technische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Carsten Strohmann
- Technische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
8
|
Li Z, Zhang L, Pu M, Lei M. Mechanistic Understanding of Base‐Catalyzed Aldimine/Ketoamine Condensations: An Old Story and A New Model. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhe‐wei Li
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
9
|
Besora M, Maseras F. Computational insights into metal-catalyzed asymmetric hydrogenation. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|