1
|
Kakavand M, Cheraghi M, Mahdavi A, Neshat A, Kozakiewicz-Piekarz A, Bazargani P, Balmohammadi Y. Ligand-Induced Intramolecular Cuprophilic and Argentophilic Interactions in Bimetallic Cu(I) and Ag(I) Phosphine Complexes and the Assessment of Their Antityrosinase and Antibacterial Effects. Inorg Chem 2025. [PMID: 39792447 DOI: 10.1021/acs.inorgchem.4c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Binuclear silver(I) and copper(I) complexes, 1 and 5, with bridging diphenylphosphine ligands were prepared. In 1, the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions. The short Ag···Ag distance, as a result of small bite angles from bridging dppm ligands, was determined to be 2.9463(4) Å. In 5, the Cu···Cu distance is 2.915(6) Å, significantly shorter than that observed in comparable structures. Intramolecular hydrogen bonding interactions in these complexes, such as C-H···F, C-H···O, and O-H···F interactions and π···π interactions, played a significant role in the crystal packing and stability of these molecules in the solid state. Derivatization of 1 and 5 using selected sulfur donor dialkyldithiophosphates gave six novel heteroleptic binuclear complexes. Single crystal X-ray diffraction studies of five of these complexes revealed interesting structural features, including strong metallophilic interactions in 1 and 5 and multiple intramolecular and intermolecular hydrogen bonding interactions. The antibacterial activities of complexes 1, 2, 3, 7, and 8 were also screened against gram-positive (Staphylococcus aureus PTCC 1112) and gram-negative (Escherichia coli PTCC 1330) bacteria. Antityrosinase and hemolytic effects of the selected compounds were also determined. Time-dependent density functional theory (TD-DFT), interaction region indicator (IRI), and fuzzy atom bond order (FBO) analyses of the selected complexes provided insights into the electronic and structural characteristics of the metal complexes.
Collapse
Affiliation(s)
- Meysam Kakavand
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mahdi Cheraghi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Atiyeh Mahdavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Anna Kozakiewicz-Piekarz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina, 7, 87-100 Toruń, Poland
| | - Parinaz Bazargani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Yaser Balmohammadi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Mahmoud AG, Sousa SA, Guedes da Silva MFC, Martins LMDRS, Leitão JH. Antimicrobial Activity of Water-Soluble Silver Complexes Bearing C-Scorpionate Ligands. Antibiotics (Basel) 2024; 13:647. [PMID: 39061329 PMCID: PMC11273918 DOI: 10.3390/antibiotics13070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The novel hydrosoluble silver coordination polymer [Ag(NO3)(μ-1κN;2κN',N″-TPMOH)]n (1) (TPMOH = tris(1H-pyrazol-1-yl)ethanol) was obtained and characterized. While single crystal X-ray diffraction analysis of compound 1 disclosed an infinite 1D helical chain structure in the solid state, NMR analysis in polar solvents confirmed the mononuclear nature of compound 1 in solution. Compound 1 and the analogue [Ag(μ-1κN;2κN',N″-TPMS)]n (2) (TPMS = tris(1H-pyrazol-1-yl)methane sulfonate) were evaluated with regard to their antimicrobial activities towards the Gram-negative Escherichia coli, Pseudomonas aeruginosa, and Burkholderia contaminans, the Gram-positive Staphylococcus aureus, and the fungal species Candida albicans and Candida glabrata. Compound 1 exhibited minimal inhibitory concentration (MIC) values ranging from 2 to 7.7 µg/mL towards the tested Gram-negative bacteria, 18 µg/mL towards the Gram-positive S. aureus, and 15 and 31 µg/mL towards C. albicans and C. glabrata, respectively. Compound 2 was less effective towards the tested bacteria, with MIC values ranging from 15 to 19.6 µg/mL towards the Gram-negative bacteria and 51 µg/mL towards S. aureus; however, it was more effective against C. albicans and C. glabrata, with MIC values of about 6 µg/mL towards these fungal species. The toxicity of compounds 1 and 2 was assessed by evaluating the survival of the Caenorhabditis elegans model organism to concentrations of up to 100 µg/mL. The value of 50% lethality (LD50) could only be estimated as 73.2 µg/mL for compound 1 at 72 h, otherwise LD50 was >100 µg/mL for both compounds 1 and 2. These results indicate compounds 1 and 2 as novel silver complexes with interesting antimicrobial properties towards bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Abdallah G. Mahmoud
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
- Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Sílvia A. Sousa
- Department of Bioengineering (DBE), Institute for Bioengineering and Biosciences (iBB), The Associate Laboratory Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - M. Fátima C. Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H. Leitão
- Department of Bioengineering (DBE), Institute for Bioengineering and Biosciences (iBB), The Associate Laboratory Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| |
Collapse
|
3
|
Guerriero A, Ienco A, Hicks T, Cilibrizzi A. Beyond transition block metals: exploring the reactivity of phosphine PTA and its oxide [PTA(O)] towards gallium(iii). RSC Adv 2024; 14:21139-21150. [PMID: 38966814 PMCID: PMC11223513 DOI: 10.1039/d4ra02877e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The water-soluble cage-like phosphine PTA (1,3,5-triaza-7-phosphaadamantane) and its phosphine oxide derivative [PTA(O)] (1,3,5-triaza-7-phosphaadamantane-7-oxide) were used to explore their reactivity towards two gallium(iii)-halide precursors, namely GaCl3 and GaI3, for the first time. By using various reaction conditions, a series of N-mono-protonated phosphine salts with [GaCl4]- or [I]- as counterions were obtained in all cases, while the formation of coordinated Ga-PTA and Ga-[PTA(O)] complexes was not observed. All compounds were characterized in solution using multinuclear NMR spectroscopy (1H, 13C{1H}, 31P{1H} and 71Ga) and in the solid state using FT-IR spectroscopy and X-ray crystal diffraction. The new Ga-phosphine salts resulted stable and highly soluble in aqueous solution at room temperature. Density functional theory (DFT) calculations were also performed to further rationalize the coordination features of PTA with Ga3+ metal ion, highlighting that the phosphorus-gallium bond is about twice weaker than the phosphorus-metal bond commonly established by PTA with transition metals such as gold. Furthermore, the mono-protonation of PTA (or [PTA(O)]) makes the formation of ionic gallium-PTA coordination complexes thermodynamically unstable, as confirmed experimentally by the formation of Ga-phosphine salts reported herein.
Collapse
Affiliation(s)
- Antonella Guerriero
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino (Florence) Italy
| | - Andrea Ienco
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino (Florence) Italy
| | - Thomas Hicks
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London Franklin Wilkins Building London SE1 9NH UK
| |
Collapse
|
4
|
Liu YJ, Liu Y, Zang SQ. Solvation-Mediated Self-Assembly from Crystals to Helices of Protic Acyclic Carbene Au I -Enantiomers with Chirality Amplification. Angew Chem Int Ed Engl 2023; 62:e202311572. [PMID: 37732820 DOI: 10.1002/anie.202311572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Constructing chiral supramolecular assembly and exploring the underlying mechanism are of great significance in promoting the development of circularly polarized luminescence (CPL)-active materials. Herein, we report a solvation-mediated self-assembly from single-crystals to helical nanofibers based on the first protic acyclic (methoxy)(amino)carbenes (pAMACs) AuI -enantiomers driven by a synergetic aurophilic interactions and H-bonds. Their aggregation-dependent thermally activated delayed fluorescence properties with high quantum yields (ΦFL ) up to 95 % were proved to be attributed to packing modes of Au⋅⋅⋅Au dimers with π-stacking or one-dimensional extended Au⋅⋅⋅Au chains. Via drop-casting method, supramolecular P- or M-helices were prepared. Detailed studies on the helices demonstrate that formations of extended helical Au⋅⋅⋅Au molecular chains amplify supramolecular chirality, leading to strong CPL with high dissymmetry factor (|glum |=0.030, ΦFL =67 %) and high CPL brightness (BCPL ) of 4.87×10-3 . Our findings bring new insights into the fabrication of helical structures to improve CPL performance by modifying aurophilic interactions.
Collapse
Affiliation(s)
- Ying-Jie Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yu Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
5
|
Ma FJ, Huang X, Li XY, Tang SL, Li DJ, Cheng YZ, Azam M, Zhang LP, Sun D. Synthesis, structure and biological activity of silver(I) complexes containing triphenylphosphine and non-steroidal anti-inflammatory drug ligands. J Inorg Biochem 2023; 250:112404. [PMID: 39492372 DOI: 10.1016/j.jinorgbio.2023.112404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Two Ag(I) complexes containing triphenylphosphine and non-steroidal anti-inflammatory drug ligands were synthesized and investigated using various spectroscopic studies and single crystal X-ray crystallography. The binding properties of tolfenamic acid, ibuprofen and the two complexes with DNA and BSA were investigated using UV or fluorescence spectroscopy. The results showed that two Ag(I) complexes bound to DNA by the intercalation mode and interacted with BSA using a static quenching procedure. Furthermore, the results of fluorescence titration suggested that the complexes had good affinity for BSA and one binding site close to BSA. The in vitro cytotoxicity of tolfenamic acid, ibuprofen, and the two complexes against four human carcinoma cell lines (MCF-7, HepG-2, A549, and HeLa cells) was tested using an MTT assay. Complex 1 had higher cytotoxicity against HeLa cells. The intracellular reactive oxygen species (ROS) assay showed complex 1 induced the ROS generation in HeLa cells in a concentration dependent manner. Flow cytometry analysis showed complex 1 could suppress the HeLa cells growth during the G0/G1 phase and induce apoptosis in dose-depended manner.
Collapse
Affiliation(s)
- Feng-Jie Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xiang Huang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xue-Ying Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Shi-Li Tang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - De-Jun Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Li-Ping Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, PR China.
| |
Collapse
|
6
|
Redox active extended networks constructed from the three-fold symmetrical TPymT ligand [2,4,6-Tris(2-pyrimidyl)-1,3,5-triazine] and silver(I) ions. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Ahmad S, Hanif M, Monim-ul-Mehboob M, Isab AA, Alotaibi MA, Ahmad T. Versatile coordination chemistry of mixed ligand silver(I) complexes of phosphanes and thioamides: Structural features and biological properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Wu H, Li R, Dong J, Sun F, Jiang Y, Shen Q. Synthesis, structure and electrochemical H2O2-sensing of two silver(I) complexes with bisbenzimidazole ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Effendy, Healy PC, Marchetti F, Pettinari C, Pettinari R, Tombesi A, Skelton BW, White AH. Synthesis and structural characterization of some 1:1 and 1:2 adducts of silver(I) salts with hindered Pmes3, PPhmes2 and PPh2mes bases (Ph = phenyl, mes = 2,4,6-trimethylpheny1)). Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Komarnicka UK, Niorettini A, Kozieł S, Pucelik B, Barzowska A, Wojtala D, Ziółkowska A, Lesiów M, Kyzioł A, Caramori S, Porchia M, Bieńko A. Two out of Three Musketeers Fight against Cancer: Synthesis, Physicochemical, and Biological Properties of Phosphino Cu I, Ru II, Ir III Complexes. Pharmaceuticals (Basel) 2022; 15:169. [PMID: 35215281 PMCID: PMC8876511 DOI: 10.3390/ph15020169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Two novel phosphine ligands, Ph2PCH2N(CH2CH3)3 (1) and Ph2PCH2N(CH2CH2CH2CH3)2 (2), and six new metal (Cu(I), Ir(III) and Ru(II)) complexes with those ligands: iridium(III) complexes: Ir(η5-Cp*)Cl2(1) (1a), Ir(η5-Cp*)Cl2(2) (2a) (Cp*: Pentamethylcyclopentadienyl); ruthenium(II) complexes: Ru(η6-p-cymene)Cl2(1) (1b), Ru(η6-p-cymene)Cl2(2) (2b) and copper(I) complexes: [Cu(CH3CN)2(1)BF4] (1c), [Cu(CH3CN)2(2)BF4] (2c) were synthesized and characterized using elemental analysis, NMR spectroscopy, and ESI-MS spectrometry. Copper(I) complexes turned out to be highly unstable in the presence of atmospheric oxygen in contrast to ruthenium(II) and iridium(III) complexes. The studied Ru(II) and Ir(III) complexes exhibited promising cytotoxicity towards cancer cells in vitro with IC50 values significantly lower than that of the reference drug-cisplatin. Confocal microscopy analysis showed that Ru(II) and Ir(III) complexes effectively accumulate inside A549 cells with localization in cytoplasm and nuclei. A precise cytometric analysis provided clear evidence for the predominance of apoptosis in induced cell death. Furthermore, the complexes presumably induce the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. Gel electrophoresis experiments revealed that Ru(II) and Ir(III) inorganic compounds showed their unusual low genotoxicity towards plasmid DNA. Additionally, metal complexes were able to generate reactive oxygen species as a result of redox processes, proved by gel electrophoresis and cyclic voltamperometry. In vitro cytotoxicity assays were also carried out within multicellular tumor spheroids and efficient anticancer action on these 3D assemblies was demonstrated. It was proven that the hydrocarbon chain elongation of the phosphine ligand coordinated to the metal ions does not influence the cytotoxic effect of resulting complexes in contrast to metal ions type.
Collapse
Affiliation(s)
- Urszula K. Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Alessandro Niorettini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (A.N.); (S.C.)
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Barbara Pucelik
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Aleksandra Ziółkowska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Monika Lesiów
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (A.N.); (S.C.)
| | | | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| |
Collapse
|
11
|
Trofimov BA, Volkov PA, Telezhkin AA. Electron-Deficient Acetylenes as Three-Modal Adjuvants in S NH Reaction of Pyridinoids with Phosphorus Nucleophiles. Molecules 2021; 26:molecules26226824. [PMID: 34833916 PMCID: PMC8619330 DOI: 10.3390/molecules26226824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Publications covering a new easy metal-free functionalization of pyridinoids (pyridines, quinolines, isoquinolines, acridine) under the action of the system of electron-deficient acetylenes (acetylenecarboxylic acid esters, acylacetylenes)/P-nucleophiles (phosphine chalcogenides, H-phosphonates) are reviewed. Special attention is focused on a SNH reaction of the regioselective cross-coupling of pyridines with secondary phosphine chalcogenides triggered by acylacetylenes to give 4-chalcogenophosphorylpyridines. In these processes, acetylenes act as three-modal adjuvants (i) activating the pyridine ring towards P-nucleophiles, (ii) deprotonating the P-H bond and (iii) facilitating the nucleophilic addition of the P-centered anion to a heterocyclic moiety followed by the release of the selectively reduced acetylenes (E-alkenes).
Collapse
|
12
|
Yuan K, Ye X, Liu W, Liu K, Wu D, Zhao W, Qian Z, Li S, Huang C, Yu Z, Chen Z. Preparation, characterization and antibacterial activity of a novel Zn(II) coordination polymer derived from carboxylic acid. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Karataş MO, Özdemir N, Sarıman M, Günal S, Ulukaya E, Özdemir İ. Water-soluble silver(i) complexes with N-donor benzimidazole ligands containing an imidazolium core: stability and preliminary biological studies. Dalton Trans 2021; 50:11596-11603. [PMID: 34355725 DOI: 10.1039/d1dt02008k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we report the synthesis, characterisation and preliminary biological evaluation of two novel silver(i) complexes of type [AgL2](NO3)3 (3 and 4) with ionic N-donor benzimidazoles. The complexes have been synthesized by the reaction of 1.5 equivalents of silver nitrate and N-donor benzimidazoles containing an imidazolium core at the 2-position (1 and 2) in ethanol. The X-ray analysis of 4 shows that it has two free imidazolium cores and the charge is balanced with three nitrate anions. A study by the combination of NMR, IR, LC-MS and elemental analysis techniques also suggests that the complexes have this structure both in the solid-state and solution. The complexes are highly soluble and stable in water. Cytotoxicity evaluation against four cancerous human cells and one non-cancerous human cell revealed that the complexes have no significant anti-growth effect. However, the complexes showed a remarkable antimicrobial effect at normalized minimum inhibitory concentrations (normalized MICs) in the range of 33-268 μM against a panel of microorganisms consisting of Gram-negative and Gram-positive bacteria, and fungi.
Collapse
Affiliation(s)
- Mert Olgun Karataş
- İnönü University, Faculty of Science, Department of Chemistry, 9044280 Malatya, Turkey.
| | | | | | | | | | | |
Collapse
|
14
|
Volkov PA, Telezhkin AA, Khrapova KO, Ivanova NI, Albanov AI, Gusarova NK, Trofimov BA. Metal-free SHN cross-coupling of pyridines with phosphine chalcogenides: polarization/deprotonation/oxidation effects of electron-deficient acetylenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj00245g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Terminal acylacetylenes act as trimodal auxiliaries in SHN cross-coupling of pyridines with phosphine chalcogenides. The reaction proceeds via phosphorylation of the pyridine 2 position followed by 2 → 4-migration of phosphoryl moieties.
Collapse
Affiliation(s)
- Pavel A. Volkov
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Anton A. Telezhkin
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Kseniya O. Khrapova
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Nina I. Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Alexander I. Albanov
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Nina K. Gusarova
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Boris A. Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| |
Collapse
|