1
|
Deng Z. Angle-Dependent Raman Spectra of Crystal Polymorphs of GaO: A Computational Study. Chemphyschem 2024; 25:e202300129. [PMID: 38095211 DOI: 10.1002/cphc.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Two crystal polymorphs of GaO consisting of GaO-H and GaO-T monolayers are proposed in this study. Based on the density functional theory calculations, the phonon dispersion demonstrates that both GaO-H and GaO-T monolayers could be stable. The band gaps of GaO-H and GaO-T monolayers are 1.51 and 1.43 eV, respectively. When an external electric field is applied, the band gaps of GaO monolayers are reduced dramatically, down to 0.13 eV with the field of 0.7 V/Å. Because of the decreased symmetry of C3v under an external electric field, more peaks of Raman spectra can be obtained. The angle-dependent Raman spectra ofA ' 1 1 ${{\rm{A}}{{^\prime}}_1^1 }$ andA ' 1 2 ${{\rm{A}}{{^\prime}}_1^2 }$ of GaO-H monolayer, andA 1 g 1 ${{\rm{A}}_{1{\rm{g}}}^1 }$ andA 1 g 2 ${{\rm{A}}_{1{\rm{g}}}^2 }$ of GaO-T monolayer are discussed seperately, with the incident lasers of 488 and 532 nm. Additionally, the Raman intensity distribution shows that the incident light should be parallel to the plane of the GaO monolayer to obtain more comparable Raman spectra. These investigations of the crystal polymorphs of GaO monolayers may guide the experimental investigations of GaO monolayers and potential optoelectronic applications.
Collapse
Affiliation(s)
- Zexiang Deng
- School of Science, Guilin University of Aerospace Technology, Guilin, 541004, China
| |
Collapse
|
2
|
Guo S, Cui Z, Zou Y, Sa B. Z-scheme Al 2SeTe/GaSe and Al 2SeTe/InS van der Waals heterostructures for photocatalytic water splitting. Phys Chem Chem Phys 2024; 26:5368-5376. [PMID: 38269434 DOI: 10.1039/d3cp05819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Designing Z-scheme van der Waals (vdW) heterostructured photocatalysts is a promising strategy for developing highly efficient overall water splitting. Herein, by employing density functional theory calculations, we systematically investigated the stability, electronic structures, photocatalytic and optical properties of Al2SeTe, GaSe, and InS monolayers and their corresponding vdW heterostructures. Interestingly, electronic structures show that all vdW heterostructures have direct band gaps, which is conducive to the transition of electrons from the valence band to the conduction band. Notably, Al2TeSe/GaSe and Al2TeSe/InS vdW heterostructures possess large overpotentials for Z-scheme photocatalytic water splitting, as proved by the results of band edge positions and band structure bending. Moreover, these vdW heterostructures exhibit good optical absorption in ultraviolet and visible light regions. We believe that our findings will open a new avenue for the modulation and development of Al2TeSe/GaSe and Al2TeSe/InS vdW heterostructures for photocatalytic water splitting.
Collapse
Affiliation(s)
- Shaoying Guo
- School of Pharmacy, Fujian Health College, Fuzhou, Fujian 350101, P. R. China.
- Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350003, P. R. China
| | - Zhou Cui
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Yanhui Zou
- School of Pharmacy, Fujian Health College, Fuzhou, Fujian 350101, P. R. China.
| | - Baisheng Sa
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
3
|
Han J, Zeng Q, Chen K, Yu X, Dai J. Lattice Thermal Conductivity of Monolayer InSe Calculated by Machine Learning Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091576. [PMID: 37177121 PMCID: PMC10180940 DOI: 10.3390/nano13091576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The two-dimensional post-transition-metal chalcogenides, particularly indium selenide (InSe), exhibit salient carrier transport properties and evince extensive interest for broad applications. A comprehensive understanding of thermal transport is indispensable for thermal management. However, theoretical predictions on thermal transport in the InSe system are found in disagreement with experimental measurements. In this work, we utilize both the Green-Kubo approach with deep potential (GK-DP), together with the phonon Boltzmann transport equation with density functional theory (BTE-DFT) to investigate the thermal conductivity (κ) of InSe monolayer. The κ calculated by GK-DP is 9.52 W/mK at 300 K, which is in good agreement with the experimental value, while the κ predicted by BTE-DFT is 13.08 W/mK. After analyzing the scattering phase space and cumulative κ by mode-decomposed method, we found that, due to the large energy gap between lower and upper optical branches, the exclusion of four-phonon scattering in BTE-DFT underestimates the scattering phase space of lower optical branches due to large group velocities, and thus would overestimate their contribution to κ. The temperature dependence of κ calculated by GK-DP also demonstrates the effect of higher-order phonon scattering, especially at high temperatures. Our results emphasize the significant role of four-phonon scattering in InSe monolayer, suggesting that combining molecular dynamics with machine learning potential is an accurate and efficient approach to predict thermal transport.
Collapse
Affiliation(s)
- Jinsen Han
- Department of Physics, National University of Defense Technology, Changsha 410073, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
| | - Qiyu Zeng
- Department of Physics, National University of Defense Technology, Changsha 410073, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
| | - Ke Chen
- Department of Physics, National University of Defense Technology, Changsha 410073, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
| | - Xiaoxiang Yu
- Department of Physics, National University of Defense Technology, Changsha 410073, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
| | - Jiayu Dai
- Department of Physics, National University of Defense Technology, Changsha 410073, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
4
|
Wan W, Guo R, Ge Y, Liu Y. Carrier and phonon transport in 2D InSe and its Janus structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:133001. [PMID: 36634370 DOI: 10.1088/1361-648x/acb2a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Recently, two-dimensional (2D) Indium Selenide (InSe) has been receiving much attention in the scientific community due to its reduced size, extraordinary physical properties, and potential applications in various fields. In this review, we discussed the recent research advancement in the carrier and phonon transport properties of 2D InSe and its related Janus structures. We first introduced the progress in the synthesis of 2D InSe. We summarized the recent experimental and theoretical works on the carrier mobility, thermal conductivity, and thermoelectric characteristics of 2D InSe. Based on the Boltzmann transport equation (BTE), the mechanisms underlying carrier or phonon scattering of 2D InSe were discussed in detail. Moreover, the structural and transport properties of Janus structures based on InSe were also presented, with an emphasis on the theoretical simulations. At last, we discussed the prospects for continued research of 2D InSe.
Collapse
Affiliation(s)
- Wenhui Wan
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Rui Guo
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yanfeng Ge
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
5
|
Ni Y, Zhang D, Liu X, Wang H, Chen Y, Xia Y, Wang H. Novel two-dimensional beta-XTe (X = Ge, Sn, Pb) as promising room-temperature thermoelectrics. J Chem Phys 2021; 155:204701. [PMID: 34852486 DOI: 10.1063/5.0065578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this paper, we designed novel low-symmetry two-dimensional (2D) structures based on conventional XTe (X = Ge, Sn, Pb) thermoelectrics with large average atomic mass. The first-principles calculations combined with Boltzmann transport theory show that the beta-XTe exhibit good stability, high electron carrier mobility, and ultralow ΚL. The subsequent analyses show that the ultralow ΚL stems from the coexistence of resonant bonding, weak bonding, and lone-pair electrons in beta-XTe, which leads to large anharmonicities. On the other hand, the lowest energy conduction band of beta-GeTe and beta-SnTe show the convergence of the low-lying Ʃ band, which is the source of the high-power factor in the two systems. The calculated maximum ZT of beta-XTe (X = Ge, Sn, Pb) are 3.08, 1.60, and 0.57 at 300 K, respectively, which is significantly greater than that of the previously reported high-symmetry 2D alpha-XTe and the commercial thermoelectrics. We hope that this work can provide important guidance for the development of thermoelectric materials.
Collapse
Affiliation(s)
- Yuxiang Ni
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
| | - Dingbo Zhang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Liu
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
| | - Yudong Xia
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
| | - Hongyan Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|