1
|
Jiao Y, Liu J, Gao Q, Sun Q. Influence of A/B Element Substitution on Negative Thermal Expansion in AB(CN) 6 (A = Al, Ga, In; B = Co, Fe, Mn, Cr, V, Ti): A Density Functional Theory Study. Inorg Chem 2023; 62:14291-14299. [PMID: 37622469 DOI: 10.1021/acs.inorgchem.3c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Negative thermal expansion as an abnormal physical behavior of materials has promising applications in a high sophisticated equipment field, but the materials are rare. Here, we use the first-principles calculations based on density functional theory combined with the recently developed average atomic volume (AAV = V/N, where V is unit cell volume and N is the number of atoms in the unit) rule to predict the large isotropic negative thermal expansion materials of Prussian blue analogues AB(CN)6 (A = Al, Ga, In; B = Co, Fe, Mn, Cr, V, Ti) in a wide temperature range. Our results clearly show that the coefficient of negative thermal expansion has a near-linear relationship with the average atomic volume of the systems and is also influenced by the element substitution at the A or B site. Lattice dynamic simulations indicate that the main contribution to the negative thermal expansion comes from the low-frequency transverse vibration of the (B)-C≡N-(A) groups, especially the transverse vibration of the N atoms. Thus, the element substitution at the A site (binding to N) can tune the negative thermal expansion behavior of the systems more effectively than that at the B site (binding to C), indicating the different roles of bonds on the negative thermal expansion. Our present work not only expands the kinds of isotropic materials but also gives some insights into the relationship between the average atomic volume and negative thermal expansion.
Collapse
Affiliation(s)
- Yixin Jiao
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Junzhe Liu
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qilong Gao
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Sun
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Boström HLB, Cairns AB, Chen M, Daisenberger D, Ridley CJ, Funnell NP. Radiation effects, zero thermal expansion, and pressure-induced phase transition in CsMnCo(CN) 6. Phys Chem Chem Phys 2022; 24:25072-25076. [PMID: 36227089 DOI: 10.1039/d2cp03754h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Prussian blue analogue CsMnCo(CN)6 is studied using powder X-ray and neutron diffraction under variable temperature, pressure, and X-ray exposure. It retains cubic F4̄3m symmetry in the range 85-500 K with minimal thermal expansion, whereas a phase transition to P4̄n2 occurs at ∼2 GPa, driven by octahedral tilting. A small lattice contraction occurs upon increased X-ray dose. Comparisons with related systems indicate that the CsI ions decrease the thermal expansion and suppress the likelihood of phase transformations. The results improve the understanding of the stimuli-responsive behaviour of coordination polymers.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany.
| | - Andrew B Cairns
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ, London, UK
- London Centre for Nanotechnology, Imperial College London, SW7 2AZ, London, UK
| | - Muzi Chen
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ, London, UK
- London Centre for Nanotechnology, Imperial College London, SW7 2AZ, London, UK
| | | | - Christopher J Ridley
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Nicholas P Funnell
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| |
Collapse
|
3
|
Illuminating the negative thermal expansion mechanism of YFe(CN)6 via electronic structure and unusual phonon modes. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Jiao Y, Gao Q, Sanson A, Liang E, Sun Q, Chen J. Understanding Large Negative Thermal Expansion of NdFe(CN) 6 through the Electronic Structure and Lattice Dynamics. Inorg Chem 2022; 61:7813-7819. [PMID: 35543502 DOI: 10.1021/acs.inorgchem.2c00310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A large negative thermal expansion (NTE) (αv = -4.1 × 10-5 K-1, 100-525 K) has been discovered in NdFe(CN)6. Here, the synchrotron X-ray diffraction and lattice dynamics calculations using the density functional theory were conducted to understand the NTE in NdFe(CN)6. The information obtained on the bond nature of the Nd-N≡C-Fe linkage and on the atomic thermal vibrations suggests that the transverse vibrations of the -N≡C- group, in particular from N atoms, produced the NTE in NdFe(CN)6. This is corroborated by the calculated Grüneisen parameters, which confirm the relationship between NTE and CN atomic vibrations. The results provide a helpful contribution toward the realization of new materials with negative or controllable thermal expansion.
Collapse
Affiliation(s)
- Yixin Jiao
- Key Laboratory of Materials Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Qilong Gao
- Key Laboratory of Materials Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Andrea Sanson
- Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy
| | - Erjun Liang
- Key Laboratory of Materials Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Qiang Sun
- Key Laboratory of Materials Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Gao Q, Jiao Y, Sanson A, Liang E, Sun Q. Large negative thermal expansion in GdFe(CN)6 driven by unusual low-frequency modes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Avila Y, Acevedo-Peña P, Reguera L, Reguera E. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Zhang Y, Sanson A, Song Y, Olivi L, Shi N, Wang L, Chen J. Biaxial negative thermal expansion in Zn[N(CN) 2] 2. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00207h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2D-layered network Zn[N(CN)2]2, is reported in which the transverse vibrations of C atoms and the rotation of ZnN4 tetrahedra dominate its biaxial NTE behavior.
Collapse
Affiliation(s)
- Ya Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Andrea Sanson
- Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy
| | - Yuzhu Song
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Luca Olivi
- Department of Elettra Sincrotrone Trieste, I-34149 Basovizza, Italy
| | - Naike Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Wang
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Luo Y, Qiao Y, Gao Q, Wang J, Guo J, Ren X, Chao M, Sun Q, Jia Y, Liang E. Anomalous Thermal Expansion in Ta 2WO 8 Oxide Semiconductor over a Wide Temperature Range. Inorg Chem 2021; 60:17758-17764. [PMID: 34797971 DOI: 10.1021/acs.inorgchem.1c02377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expansion of material is one of the major impediments in the high precision instrument and engineering field. Low/zero thermal expansion compounds have drawn great attention because of their important scientific significance and enormous application value. However, the realization of low thermal expansion over a wide temperature range is still scarce. In this study, a low thermal expansion over a wide temperature range has been observed in the Ta2WO8 oxide semiconductor. It is a balance effect of the negative thermal expansion of the a axis and the positive thermal expansion of the b axis and the c axis to achieve low thermal expansion behavior. The results of the means of variable temperature X-ray diffraction and variable pressure Raman spectroscopy analysis indicated that the transverse vibration of bridging oxygen atoms is the driving force, which is corresponding to the low-frequency lattice modes with a negative Grüneisen parameter. The present study provides one wide band gap semiconductor Ta2WO8 with anomalous thermal expansion behavior.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yongqiang Qiao
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Qilong Gao
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Jiaqi Wang
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Juan Guo
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Xiao Ren
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Mingju Chao
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Qiang Sun
- International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450052, China
| | - Yu Jia
- Key Laboratory of Special Functional Materials of Ministry of Education of China, and School of Materials Science and Engineering, Henan University, Henan 475004, China.,International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450052, China
| | - Erjun Liang
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Gao Y, Wang C, Gao Q, Guo J, Chao M, Jia Y, Liang E. Zero Thermal Expansion in Ta 2Mo 2O 11 by Compensation Effects. Inorg Chem 2020; 59:18427-18431. [PMID: 33269919 DOI: 10.1021/acs.inorgchem.0c03046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although zero thermal expansion (ZTE) materials have broad application prospects for high precision engineering, they are rare. Here, a new ZTE material, Ta2Mo2O11 (αl = 0.37 × 10-6 K-1, 200-600 K), is reported. A joint study of high-resolution synchrotron X-ray diffraction, temperature- and pressure-dependent Raman spectroscopy, and first-principles calculations was performed to investigate the structure and dynamics of Ta2Mo2O11 with the aim of understanding its ZTE mechanism. Ta2Mo2O11 displays a layered structure, stacking along the [001] direction. Analysis of the phonon modes indicates that positive and negative contributions to thermal expansion are balanced, and a shrinkage occurs along the layers, while the interlayer distance expands with increasing temperature, thus giving rise to the ZTE behavior of Ta2Mo2O11. The present study provides a promising ZTE material and new insights into the mechanisms of thermal expansion.
Collapse
Affiliation(s)
- Yaxing Gao
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Chunyan Wang
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.,Key Laboratory of Special Functional Materials of Ministry of Education of China and School of Materials Science and Engineering, Henan University, Henan 475004, China
| | - Qilong Gao
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Juan Guo
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Mingju Chao
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yu Jia
- Key Laboratory of Special Functional Materials of Ministry of Education of China and School of Materials Science and Engineering, Henan University, Henan 475004, China.,International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450052, China
| | - Erjun Liang
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|