1
|
Lin J, Schaller M, Cherkashinin G, Indris S, Du J, Ritter C, Kondrakov A, Janek J, Brezesinski T, Strauss F. Synthetic Tailoring of Ionic Conductivity in Multicationic Substituted, High-Entropy Lithium Argyrodite Solid Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306832. [PMID: 38009745 DOI: 10.1002/smll.202306832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Superionic conductors are key components of solid-state batteries (SSBs). Multicomponent or high-entropy materials, offering a vast compositional space for tailoring properties, have recently attracted attention as novel solid electrolytes (SEs). However, the influence of synthetic parameters on ionic conductivity in compositionally complex SEs has not yet been investigated. Herein, the effect of cooling rate after high-temperature annealing on charge transport in the multicationic substituted lithium argyrodite Li6.5[P0.25Si0.25Ge0.25Sb0.25]S5I is reported. It is demonstrated that a room-temperature ionic conductivity of ∼12 mS cm-1 can be achieved upon cooling at a moderate rate, superior to that of fast- and slow-cooled samples. To rationalize the findings, the material is probed using powder diffraction, nuclear magnetic resonance and X-ray photoelectron spectroscopy combined with electrochemical methods. In the case of moderate cooling rate, favorable structural (bulk) and compositional (surface) characteristics for lithium diffusion evolve. Li6.5[P0.25Si0.25Ge0.25Sb0.25]S5I is also electrochemically tested in pellet-type SSBs with a layered Ni-rich oxide cathode. Although delivering larger specific capacities than Li6PS5Cl-based cells at high current rates, the lower (electro)chemical stability of the high-entropy Li-ion conductor led to pronounced capacity fading. The research data indicate that subtle changes in bulk structure and surface composition strongly affect the electrical conductivity of high-entropy lithium argyrodites.
Collapse
Affiliation(s)
- Jing Lin
- Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mareen Schaller
- Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gennady Cherkashinin
- Advanced Thin Film Technology, Institute of Materials Science, Technical University of Darmstadt, Alarich-Weiss Str. 2, 64287, Darmstadt, Germany
| | - Sylvio Indris
- Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jianxuan Du
- Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | | | - Aleksandr Kondrakov
- Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany
| | - Jürgen Janek
- Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry & Center for Materials Research (ZfM/LaMa), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Torsten Brezesinski
- Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Florian Strauss
- Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Strauss F, Lin J, Karger L, Weber D, Brezesinski T. Probing the Lithium Substructure and Ionic Conductivity of the Solid Electrolyte Li 4PS 4I. Inorg Chem 2022; 61:5885-5890. [PMID: 35384653 DOI: 10.1021/acs.inorgchem.2c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In search of high-performance solid electrolytes, various materials have been discovered in the past, approaching or even exceeding the ionic conductivity of conventional liquid electrolytes. Among the reported classes of superionic electrolytes for solid-state battery applications, lithium thiophosphates appear to be the most promising owing to their high ionic conductivity and mechanical softness. A recent example is the Li4PS4I phase (P4/nmm). Surprisingly, this material shows a comparatively low ionic conductivity at room temperature ranging from 10-4 to 10-5 S cm-1 despite having favorable structural characteristics. Because of discrepancies between experiment and theory regarding the Li-ion conductivity and polymorphism in Li4PS4I, we herein examine the crystal structure over a broad temperature range using ex situ and in situ X-ray and neutron powder diffraction techniques. We demonstrate the absence of polymorphic transitions, with a lithium redistribution at low temperatures though, and confirm the relatively poor room-temperature ionic conductivity despite the presence of a three-dimensional (3D) percolation network for facile charge transport.
Collapse
Affiliation(s)
- Florian Strauss
- Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jing Lin
- Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Leonhard Karger
- Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Daniel Weber
- Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Torsten Brezesinski
- Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Lee JM, Park YS, Moon JW, Hwang H. Ionic and Electronic Conductivities of Lithium Argyrodite Li 6PS 5Cl Electrolytes Prepared via Wet Milling and Post-Annealing. Front Chem 2022; 9:778057. [PMID: 34976950 PMCID: PMC8717468 DOI: 10.3389/fchem.2021.778057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lithium argyrodite Li6PS5Cl powders are synthesized from Li2S, P2S5, and LiCl via wet milling and post-annealing at 500°C for 4 h. Organic solvents such as hexane, heptane, toluene, and xylene are used during the wet milling process. The phase evolution, powder morphology, and electrochemical properties of the wet-milled Li6PS5Cl powders and electrolytes are studied. Compared to dry milling, the processing time is significantly reduced via wet milling. The nature of the solvent does not affect the ionic conductivity significantly; however, the electronic conductivity changes noticeably. The study indicates that xylene and toluene can be used for the wet milling to synthesize Li6PS5Cl electrolyte powder with low electronic and comparable ionic conductivities. The all-solid-state cell with the xylene-processed Li6PS5Cl electrolyte exhibits the highest discharge capacity of 192.4 mAh·g−1 and a Coulombic efficiency of 81.3% for the first discharge cycle.
Collapse
Affiliation(s)
- Jae Min Lee
- Department of Materials Science and Engineering, Inha University, Incheon, South Korea
| | - Young Seon Park
- Department of Materials Science and Engineering, Inha University, Incheon, South Korea
| | - Ji-Woong Moon
- Battery Materials Research Center, Research Institute of Industrial Science and Technology, Pohang, South Korea
| | - Haejin Hwang
- Department of Materials Science and Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
4
|
Zhao C, Lyu M, Bi C, Huo S, Li S, Xue W. Synthesis of high ionic conductivity Li6PS5Cl solid electrolyte by second sintering process. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
5
|
Gautam A, Ghidiu M, Hansen AL, Ohno S, Zeier WG. Sn Substitution in the Lithium Superionic Argyrodite Li 6PCh 5I (Ch = S and Se). Inorg Chem 2021; 60:18975-18980. [PMID: 34851091 DOI: 10.1021/acs.inorgchem.1c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lithium argyrodites Li6PS5X (X = Cl, Br, and I) have attracted interest as fast solid ionic conductors for solid-state batteries. Within this class of materials, it has been previously suggested that more polarizable anions and larger substituents should influence the ionic conductivity (e.g., substituting S by Se). Building upon this work, we explore the influence of Sn substitution in lithium argyrodites Li6+xSnxP1-xSe5I in direct comparison to the previously reported Li6+xSnxP1-xS5I series. The (P5+/Sn4+)Se43/4- polyhedral volume, unit cell volume, and lithium coordination tetrahedra Li(48h)-(S/Se)3-I increase with Sn substitution in this new selenide series. Impedance spectroscopy reveals that increasing Sn4+ substitution results in a fivefold improvement in the ionic conductivity when compared to Li6PSe5I. This work provides further understanding of compositional influences for optimizing the ionic conductivity of solid electrolytes.
Collapse
Affiliation(s)
- Ajay Gautam
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Michael Ghidiu
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Anna-Lena Hansen
- Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Saneyuki Ohno
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395 Fukuoka, Japan
| | - Wolfgang G Zeier
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 30, 48149 Münster, Germany.,Institut für Energie- und Klimaforschung (IEK), IEK-12: Helmholtz-Institut Münster, Forschungszentrum Jülich, 48149 Münster, Germany
| |
Collapse
|