1
|
Huang HY, Ren BH, Xie M, Huang YT, Li K, Cai Z, Lu XB, Zhu JB. Access to Polyhydroxyalkanoates with Diverse Syndiotacticity via Polymerization by Spiro-Salen Complexes and Insights into the Stereocontrol Mechanism. Angew Chem Int Ed Engl 2025; 64:e202419494. [PMID: 39714575 DOI: 10.1002/anie.202419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Polyhydroxyalkanoates (PHAs) have attracted broad interest as promising sustainable materials to address plastic pollution and resource scarcity. However, the chemical synthesis of stereoregular PHAs via ring-opening polymerization (ROP) has long been an elusive endeavor. In this contribution, we exploited a robust spiro-salen yttrium complex (Y3) as the catalyst to successfully prepare syndiotactic PHAs with diverse pendent groups. Simply altering the ratio of enantiomeric catalysts allowed to access of PHAs with diverse syndiotacticity (Pr=0.5-0.99, from sticky oil to tough materials), delivering tunable thermal properties (glass transition temperature, Tg from -52 to 70 °C and melting transition temperature, Tm from 38 to 223 °C). A combined experimental and computational study suggested a polymeric exchange mechanism could boost the polymerization activity and control the syndioselectivity.
Collapse
Affiliation(s)
- Hao-Yi Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Min Xie
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Yu-Ting Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Kun Li
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| |
Collapse
|
2
|
Shi Y, Wang Y, Yuan D, Yao Y. Synthesis of Rare Earth Metal Complexes Stabilized by Amine Bridged Bis(phenolato) Ligands and Their Performance in the Polymerization of rac-β-Butyrolactone. Chem Asian J 2024:e202400820. [PMID: 39219477 DOI: 10.1002/asia.202400820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
A series of rare earth alkoxides bearing amine-bridged bis(phenolato) ligands were synthesized through sequential reactions of RE(C5H5)3(THF) (RE = Y, Lu) or Nd[N(SiMe3)2]3 with bis(phenols) LH2 and CF3CH2OH. Complexes REL(OCH2CF3)(THF)n (1-6) bearing different aryl-substituents were obtained in good yields of 59-70 %. They were applied in the ring-opening polymerization (ROP) of rac-β-butyrolactone (rac-BBL), which showed good activity (TOF up to 27,300 h-1), resulting in syndiotactically enriched poly(3-hydroxybutyrate) (PHB) (Pr up to 0.86) with narrow polydispersities (PDI ≤ 1.27). The yttrium complex 3 bearing bulky o-1,1-diphenylethyl substituents outperformed other complexes, suggesting that the smaller ionic radii of metal centers and bulky ortho substituents of ancillary ligands play crucial roles in controlling the activity and stereoselectivity in ROP of rac-BBL. Kinetics of the polymerization of rac-BBL initiated by complex 3 was investigated, which revealed first order dependences on the monomer and initiator concentrations, respectively.
Collapse
Affiliation(s)
- Yize Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Yanwei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| |
Collapse
|
3
|
Beament B, Britton D, Malcomson T, Akien GR, Halcovitch NR, Coogan MP, Platel RH. Selective Transesterification to Control Copolymer Microstructure in the Ring-Opening Copolymerization of Lactide and ε-Caprolactone by Lanthanum Complexes. Inorg Chem 2024; 63:280-293. [PMID: 38126711 PMCID: PMC10777408 DOI: 10.1021/acs.inorgchem.3c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
A series of novel lanthanum amido complexes, supported by ligands designed around the salan framework (salan = N,N'-bis(o-hydroxy, m-di-tert-butylbenzyl)-1,2-diaminoethane) were synthesized and fully characterized in the solid and solution states. The ligands incorporate benzyl or 2-pyridyl substituents at each tertiary amine center. The complexes were investigated as catalysts in the ring-opening homopolymerization of lactide (LA) and ε-caprolactone (ε-CL) and copolymerization of equimolar amounts of LA and ε-CL at ambient temperature. Solvent (THF or toluene) and the number of 2-pyridyl groups in the complex were found to influence the reactivity of the catalysts in copolymerization reactions. In all cases, complete conversion of LA to PLA was observed. The use of THF, a coordinating solvent, suppressed ε-CL polymerization, while the presence of one or more 2-pyridyl groups promoted ε-CL polymerization. Each copolymer gave a monomodal trace in gel permeation chromatography-size-exclusion chromatography (GPC-SEC) experiments, indicative of copolymer formation over homopolymerization. Copolymer microstructure was found to be dependent on catalyst structure and reaction solvent, ranging from blocky to close to alternating. Experiments revealed rapid conversion of LA in the initial stages of the reaction, followed by incorporation of ε-CL into the copolymer by either transesterification or propagation reactions. Significantly, the mode of transesterification (TI or TII) that occurs is determined by the structure of the metal complex and the reaction solvent, leading to the possibility of controlling copolymer microstructure through catalyst design.
Collapse
Affiliation(s)
- Bette Beament
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Daniel Britton
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Thomas Malcomson
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Geoffrey R. Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Nathan R. Halcovitch
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Michael P. Coogan
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Rachel H. Platel
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
4
|
Zhao J, Kan Y, Chen Z, Li H, Zhang W. MOFs-Modified Electrochemical Sensors and the Application in the Detection of Opioids. BIOSENSORS 2023; 13:284. [PMID: 36832051 PMCID: PMC9954106 DOI: 10.3390/bios13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Opioids are widely used in clinical practice, but drug overdoses can lead to many adverse reactions, and even endanger life. Therefore, it is essential to implement real-time measurement of drug concentrations to adjust the dosage given during treatment, keeping drug levels within therapeutic levels. Metal-Organic frameworks (MOFs) and their composite materials modified bare electrode electrochemical sensors have the advantages of fast production, low cost, high sensitivity, and low detection limit in the detection of opioids. In this review, MOFs and MOFs composites, electrochemical sensors modified with MOFs for the detection of opioids, as well as the application of microfluidic chips in combination with electrochemical methods are all reviewed, and the potential for the development of microfluidic chips electrochemical methods with MOFs surface modifications for the detection of opioids is also prospected. We hope that this review will provide contributions to the study of electrochemical sensors modified with MOFs for the detection of opioids.
Collapse
Affiliation(s)
- Jiaqi Zhao
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Ying Kan
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Weifei Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
5
|
Jameei Moghaddam N, Gil-Sepulcre M, Wang JW, Benet-Buchholz J, Gimbert-Suriñach C, Llobet A. Interplay between β-Diimino and β-Diketiminato Ligands in Nickel Complexes Active in the Proton Reduction Reaction. Inorg Chem 2022; 61:16639-16649. [PMID: 36196853 PMCID: PMC9597662 DOI: 10.1021/acs.inorgchem.2c02150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two Ni complexes are reported with κ4-P2N2 β-diimino (BDI) ligands with the general formula [Ni(XBDI)](BF4)2, where BDI is N-(2-(diphenylphosphaneyl)ethyl)-4-((2-(diphenylphosphaneyl)ethyl)imino)pent-2-en-2-amine and X indicates the substituent in the α-carbon intradiimine position, X = H for 1(BF4)2 and X = Ph for 2(BF4)2. Electrochemical analysis together with UV-vis and NMR spectroscopy in acetonitrile and dimethylformamide (DMF) indicates the conversion of the β-diimino complexes 12+ and 22+ to the negatively charged β-diketiminato (BDK) analogues (1-H)+ and (2-H)+ via deprotonation in DMF. Moreover, further electrochemical and spectroscopy evidence indicates that the one-electron-reduced derivatives 1+ and 2+ can also rapidly evolve to the BDK (1-H)+ and (2-H)+, respectively, via hydrogen gas evolution through a bimolecular homolytic pathway. Finally, both complexes are demonstrated to be active for the proton reduction reaction in DMF at Eapp = -1.8 V vs Fc+/0, being the active species the one-electron-reduced derivative 1-H and 2-H.
Collapse
Affiliation(s)
- Navid Jameei Moghaddam
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007Tarragona, Spain.,Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007Tarragona, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007Tarragona, Spain
| | - Jia-Wei Wang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193Barcelona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193Barcelona, Spain
| |
Collapse
|
6
|
Tian T, Feng C, Wang Y, Zhu X, Yuan D, Yao Y. Synthesis of N-Methyl- o-phenylenediamine-Bridged Bis(phenolato) Lanthanide Alkoxides and Their Catalytic Performance for the (Co)Polymerization of rac-Butyrolactone and l-Lactide. Inorg Chem 2022; 61:9918-9929. [PMID: 35723524 DOI: 10.1021/acs.inorgchem.2c00582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of lanthanide alkoxo complexes supported by ONNO salalen ligands were synthesized and characterized. A one-pot reaction of LH2 (L = (2-O-C6H2-tBu2-3,5)CH═N-C6H4-N(CH3)CH2(2-O-C6H2-tBu2-3,5)) with LnCp3(THF) in a 1:1 molar ratio followed by the addition of 1 equiv of ROH (R = Bn, iPr, and CF3CH2), afforded the dimeric lanthanide alkoxo complexes [LLn(μ-OCH2Ph)]2 [Ln = Lu (1), Yb (2), Sm (3), Nd (4)], [L2Yb(μ-OiPr)]2 (5), and [L2Yb(μ-OCH2CF3)]2 (6) in good isolated yields. All these lanthanide complexes were characterized by elemental analysis and FT-IR spectroscopy. In addition, complex 1 has been characterized by NMR spectroscopy. Single-crystal X-ray diffraction analysis of complexes 1, 2, 5, and 6 showed that these lanthanide alkoxo complexes are dimeric in the solid state. Complexes 1-6 showed good activity toward the homopolymerization of rac-butyrolactone (rac-BBL) to give atactic PHB, and ionic radii of central metals have profound influence on the polymerization. The polymerization behavior of l-lactide (l-LA) initiated by complex 2 was also explored. The kinetic study revealed that the polymerizations of rac-BBL and l-LA initiated by salalen lanthanide akoxide are first order for both the monomer and the initiator concentrations. Furthermore, it was found that complexes 1 and 2 showed good activity in the copolymerization of l-LA and rac-BBL, affording gradient copolymers.
Collapse
Affiliation(s)
- Tian Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering & Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Chunping Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering & Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Yaorong Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering & Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Xuehua Zhu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering & Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering & Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
7
|
Zhu X, Wang Z, Zha L, Zhang Y, Qi Y, Yuan Q, Zhou S, Wang S. Synthesis and Characterization of N, N, C and N, N, O Tridentate β-Diketiminato Rare-Earth Metal Alkyl Complexes and Their Catalytic Performances on the Dimerization of Aldehydes or Terminal Alkynes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiancui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Ziqian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Ling Zha
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yiwei Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yawen Qi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
8
|
Dong X, Brown AM, Woodside AJ, Robinson JR. N-Oxides amplify catalyst reactivity and isoselectivity in the ring-opening polymerization of rac-β-butyrolactone. Chem Commun (Camb) 2022; 58:2854-2857. [PMID: 35137743 DOI: 10.1039/d1cc05127j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Oxides can amplify the performance of a lanthanum aminobisphenolate catalyst in the ring-opening polymerization (ROP) of rac-β-butyrolactone (rac-BBL) to unprecedented levels (TOF/Pm; At RT: 1900 h-1/0.73, At -30 °C: 200 h-1/0.82). Experiments and computations establish donor electronics control catalyst activity, while donor sterics control catalyst deactivation.
Collapse
Affiliation(s)
- Xiang Dong
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Alexander M Brown
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Audra J Woodside
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
9
|
Dong X, Robinson JR. The versatile roles of neutral donor ligands in tuning catalyst performance for the ring-opening polymerization of cyclic esters. NEW J CHEM 2022. [DOI: 10.1039/d1nj02694a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of neutral donor ligands is an effective strategy to modify catalyst structure and performance in the synthesis of sustainable polymers through the ring-opening polymerization (ROP) of cyclic esters.
Collapse
Affiliation(s)
- Xiang Dong
- Department of Chemistry, Brown University, 324 Brook St. Providence, RI 02912, USA
| | - Jerome R. Robinson
- Department of Chemistry, Brown University, 324 Brook St. Providence, RI 02912, USA
| |
Collapse
|
10
|
Casey KC, Brown AM, Robinson JR. Yttrium and lanthanum bis(phosphine-oxide)methanides: structurally diverse, dynamic, and reactive. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01438a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homoleptic yttrium and lanthanum complexes of bis(phosphineoxide) methanides, RE(HPhL)3 and RE2(HMeL)6, promote the first rare-earth mediated Horner-Wittig and acid-base chemistry consistent with multifunctional reactivity (Lewis-acid/Brønstedbase).
Collapse
|