1
|
Sentyurin VV, Levitskiy OA, Yankova TS, Grishin YK, Lyssenko KA, Goloveshkin AS, Alabugin IV, Magdesieva TV. Double Spin with a Twist: Synthesis and Characterization of a Neutral Mixed-Valence Organic Stable Diradical. J Am Chem Soc 2024; 146:26261-26274. [PMID: 39259835 DOI: 10.1021/jacs.4c08167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A convenient design strategy opens access to neutral open-shell mixed-valence species via the redox transformation of charged stable precursors, i.e., the spiro-fused borate anions. We have implemented this strategy for the synthesis of the first neutral mixed-valence diradical: two neutral mixed-valence radical fragments were assembled via a twisted biphenyl bridge. The diradical is a crystalline solid obtained in almost quantitative yield by using a facile synthetic procedure. It is stable at room temperature in the triplet ground state with a very small singlet/triplet gap. This metal-free diradical can reversibly form five redox states. The diradical exhibits an intense IVCT band in the NIR region and can be assigned as a Class 2 Robin-Day MV (mixed valence) system with weakly interacting redox centers. Computations suggest that this diradical finds itself in a unique tug-of-war between two electron delocalization patterns, Kekulé and non-Kekulé, which gives rise to two geometric isomers that are close in energy but drastically different in spin distribution and polarity. Such bistable spin-systems should be intrinsically switchable and promising for the design of functional spin devices. The scope and limitations of the new redox-strategy for the neutral MV radicals were also tested on other types of spiro-fused borates, revealing structural factors responsible for the evolution from transient to persistent and then to stable radicals.
Collapse
Affiliation(s)
- Vyacheslav V Sentyurin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Oleg A Levitskiy
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Tatiana S Yankova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Yuri K Grishin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Konstantin A Lyssenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Alexander S Goloveshkin
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow 119934, Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Tatiana V Magdesieva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| |
Collapse
|
2
|
Liza N, Coe DJ, Lu Y, Blair EP. Ab initio studies of counterion effects in molecular quantum-dot cellular automata. J Comput Chem 2024; 45:392-404. [PMID: 38014502 DOI: 10.1002/jcc.27247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/08/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023]
Abstract
Molecular quantum-dot cellular automata (QCA) is a low-power computing paradigm that may offer ultra-high device densities and THz-speed switching at room temperature. A single mixed-valence (MV) molecule acts as an elementary QCA device known as a cell. Cells coupled locally via the electrostatic field form logic circuits. However, previously-synthesized ionic MV molecular cells are affected by randomly-located, nearby neutralizing counterions that can bias device states or change device characteristics, causing incorrect computational results. This ab initio study explores how non-biasing counterions affect individual molecular cells. Additionally, we model two novel neutral, zwitterionic MV QCA molecules designed to avoid biasing and other undesirable counterionic effects. The location of the neutralizing counterion is controlled by integrating one counterion into each cell at a well-defined, non-biasing location. Each zwitterionic QCA candidate molecule presented here has a fixed, integrated counterion, which neutralizes the mobile charges used to encode the device state.
Collapse
Affiliation(s)
- Nishattasnim Liza
- Department of Electrical and Computer Engineering, Baylor University, Waco, Texas, USA
| | - Daniel J Coe
- Department of Electrical and Computer Engineering, Baylor University, Waco, Texas, USA
| | - Yuhui Lu
- Department of Electrical and Computer Engineering, Baylor University, Waco, Texas, USA
| | - Enrique P Blair
- Department of Electrical and Computer Engineering, Baylor University, Waco, Texas, USA
| |
Collapse
|
3
|
Montenegro-Pohlhammer N, Palomino CM, Calzado CJ. Exploring the potential as molecular quantum-dot cellular automata of a mixed-valence Ru2 complex deposited on a Au(111) surface. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02647c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
A Ru2+ complex deposited on a Au(111) surface in the presence of a counterion presents excess charge localized on one side of the molecule. The switching can be promoted by an applied electric field, E, stronger than the critical field strength Ec.
Collapse
Affiliation(s)
- Nicolás Montenegro-Pohlhammer
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), 9170022, Santiago, Chile
| | - Carlos M. Palomino
- Departamento de Química Física, Universidad de Sevilla, c/ Prof. García González, s/n 41012, Sevilla, Spain
| | - Carmen J. Calzado
- Departamento de Química Física, Universidad de Sevilla, c/ Prof. García González, s/n 41012, Sevilla, Spain
| |
Collapse
|
4
|
Liza N, Lu Y, Blair EP. Designing boron-cluster-centered zwitterionic Y-shaped clocked QCA molecules. NANOTECHNOLOGY 2022; 33:465201. [PMID: 35944440 DOI: 10.1088/1361-6528/ac8810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Quantum-dot cellular automata (QCA) is a nanoscale, transistor-less device technology. A single molecule may provide an elementary QCA device known as a cell. Molecular redox centers function as quantum dots, and the configuration of mobile charge on the dots encodes device states useful for classical computing. Molecular QCA may support ultra-high device densities and THz-scale switching speeds at room temperature. An applied electric field may be used to clock molecular QCA, providing power gain to boost weakened signals, as well as quasi-adiabatic device operation for minimal power dissipation in QCA devices and circuits. A zwitterionic, Y-shaped, three-dot molecule may function as a field-clocked QCA cell. We focus on the design of a counterion built into the center of the cell.Ab initiocomputations demonstrate that choice of counterion determines the number of mobile charges for encoding the device state on the three quantum dots. We useB5H52-orB4CH5-as the central counterionic linker for two different Y-shaped, three-dot QCA molecules. While both molecules support the desired device states, the number of trapped charges in the counterion determines the number of mobile holes on the molecular quantum dots. This, in turn, determines whether the device state is encoded by a hole or an electron. This choice of encoding determines how the molecular QCA cell responds to a clocking field. The two counterions studied here lead to two QCA molecules with opposite responses to the clock, similar to the complementary responses of PMOS and NMOS transistors to gated voltage control.
Collapse
Affiliation(s)
- Nishattasnim Liza
- Electrical and Computer Engineering Department, Baylor University, Waco, TX, United States of America
| | - Yuhui Lu
- Electrical and Computer Engineering Department, Baylor University, Waco, TX, United States of America
| | - Enrique P Blair
- Electrical and Computer Engineering Department, Baylor University, Waco, TX, United States of America
| |
Collapse
|
5
|
Tsukerblat B, Palii A, Zilberg S, Korchagin DV, Aldoshin S, Clemente-Juan JM. Vibronic recovering of functionality of quantum cellular automata based on bi-dimeric square cells with violated condition of strong Coulomb repulsion . J Chem Phys 2022; 157:074308. [DOI: 10.1063/5.0096182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract <p>Strong Coulomb repulsion between the two charges in a square planar mixed-valence cell in quantum cellular automata (QCA) allows to encode the binary information in the two energetically beneficial diagonal distributions of the electronic density. In this article we pose a question: to what extent is this condition obligatory for the design of the molecular cell? To answer this question, we examine the ability to use square-planar cell composed of one-electron mixed valence dimers to function in QCA in a general case when the intracell Coulomb interaction U is not supposed to be extremely strong, which means that it is comparable with the characteristic electron transfer energy (violated strong U limit). Using the two-mode vibronic model treated within the semiclassical (adiabatic) and quantum-mechanical approaches we demonstrate that strong vibronic coupling is able to create a considerable barrier between the two diagonal-type charge configurations thus ensuring bistability and polarizability of the cells even if the Coulomb barrier is not sufficient. Moreover, such barrier is shown to be independent of the type of mutual arrangement of the two bi-dimeric cells that is important for the creation of QCA devices. Revealing of such "vibronic recovery" of strong localization when the strong U limit is violated suggests a way to a significant expansion of the class of molecular systems suitable as QCA cells.
Collapse
Affiliation(s)
- Boris Tsukerblat
- Department of Chemistry, Ben-Gurion University of the Negev Department of Chemistry, Israel
| | - Andrew Palii
- Departament de Quimica Inorganica, Universitat de Valencia, Spain
| | | | | | | | | |
Collapse
|
6
|
Aleshin DY, Diego R, Barrios LA, Nelyubina YV, Aromí G, Novikov VV. Unravelling of a [High Spin—Low Spin] ↔ [Low Spin—High Spin] Equilibrium in Spin‐Crossover Iron(II) Dinuclear Helicates Using Paramagnetic NMR Spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dmitry Yu. Aleshin
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova str. 28 11999 Moscow Russia
| | - Rosa Diego
- Department de Quimica Inorganica and IN2UB Universitat de Barcelona Diagonal 647 08028 Barcelona Spain
| | - Leoní A. Barrios
- Department de Quimica Inorganica and IN2UB Universitat de Barcelona Diagonal 647 08028 Barcelona Spain
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova str. 28 11999 Moscow Russia
- Moscow Institute of Physics and Technology Institutskiy per. 9 141700 Dolgoprudny Moscow region Russia
| | - Guillem Aromí
- Department de Quimica Inorganica and IN2UB Universitat de Barcelona Diagonal 647 08028 Barcelona Spain
| | - Valentin V. Novikov
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova str. 28 11999 Moscow Russia
- Moscow Institute of Physics and Technology Institutskiy per. 9 141700 Dolgoprudny Moscow region Russia
| |
Collapse
|
7
|
Impact of Molecular Electrostatics on Field-Coupled Nanocomputing and Quantum-Dot Cellular Automata Circuits. ELECTRONICS 2022. [DOI: 10.3390/electronics11020276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The molecular Field-Coupled Nanocomputing (FCN) is a promising implementation of the Quantum-dot Cellular Automata (QCA) paradigm for future low-power digital electronics. However, most of the literature assumes all the QCA devices as possible molecular FCN devices, ignoring the molecular physics. Indeed, the electrostatic molecular characteristics play a relevant role in the interaction and consequently influence the functioning of the circuits. In this work, by considering three reference molecular species, namely neutral, oxidized, and zwitterionic, we analyze the fundamental devices, aiming to clarify how molecule physics impacts architectural behavior. We thus examine through energy analysis the fundamental cell-to-cell interactions involved in the layouts. Additionally, we simulate a set of circuits using two available simulators: SCERPA and QCADesigner. In fact, ignoring the molecular characteristics and assuming the molecules copying the QCA behavior lead to controversial molecular circuit proposals. This work demonstrates the importance of considering the molecular type during the design process, thus declaring the simulators working scope and facilitating the assessment of molecular FCN as a possible candidate for future digital electronics.
Collapse
|
8
|
Lepont J, Roisnel T, Hamon J, Lapinte C. 1,3‐Diethynyl‐5‐(X)‐benzene‐Bridged [Cp*(dppe)Fe]
n+
Units: Effect of Substituents on the Metal‐Metal Interactions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joseph Lepont
- Univ Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | | | | |
Collapse
|
9
|
Liza N, Murphey D, Cong P, Beggs DW, Lu Y, Blair EP. Asymmetric, mixed-valence molecules for spectroscopic readout of quantum-dot cellular automata. NANOTECHNOLOGY 2021; 33:115201. [PMID: 34875643 DOI: 10.1088/1361-6528/ac40c0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/07/2021] [Indexed: 06/13/2023]
Abstract
Mixed-valence compounds may provide molecular devices for an energy-efficient, low-power, general-purpose computing paradigm known as quantum-dot cellular automata (QCA). Multiple redox centers on mixed-valence molecules provide a system of coupled quantum dots. The configuration of mobile charge on a double-quantum-dot (DQD) molecule encodes a bit of classical information robust at room temperature. When arranged in non-homogeneous patterns (circuits) on a substrate, local Coulomb coupling between molecules enables information processing. While single-electron transistors and single-electron boxes could provide low-temperature solutions for reading the state of a ∼1 nm scale molecule, we propose a room-temperature read-out scheme. Here, DQD molecules are designed with slightly dissimilar quantum dots.Ab initiocalculations show that the binary device states of an asymmetric molecule have distinct Raman spectra. Additionally, the dots are similar enough that mobile charge is not trapped on either dot, allowing device switching driven by the charge configuration of a neighbor molecule. A technique such as tip-enhanced Raman spectroscopy could be used to detect the state of a circuit comprised of several QCA molecules.
Collapse
Affiliation(s)
- Nishattasnim Liza
- Electrical and Computer Engineering Department, Baylor University, Waco, TX, United States of America
| | - Dylan Murphey
- Electrical and Computer Engineering Department, Baylor University, Waco, TX, United States of America
| | - Peizhong Cong
- Electrical and Computer Engineering Department, Baylor University, Waco, TX, United States of America
| | - David W Beggs
- Electrical and Computer Engineering Department, Baylor University, Waco, TX, United States of America
| | - Yuihui Lu
- Electrical and Computer Engineering Department, Baylor University, Waco, TX, United States of America
| | - Enrique P Blair
- Electrical and Computer Engineering Department, Baylor University, Waco, TX, United States of America
| |
Collapse
|
10
|
Aleshin DY, Diego R, Barrios LA, Nelyubina YV, Aromí G, Novikov VV. Unravelling of a [High Spin-Low Spin] ↔ [Low Spin-High Spin] Equilibrium in Spin-Crossover Iron(II) Dinuclear Helicates Using Paramagnetic NMR Spectroscopy. Angew Chem Int Ed Engl 2021; 61:e202110310. [PMID: 34757659 DOI: 10.1002/anie.202110310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Spin-crossover between high-spin (HS) and low-spin (LS) states of selected transition metal ions in polynuclear and polymeric compounds is behind their use as multistep switchable materials in breakthrough electronic and spintronic devices. We report the first successful attempt to observe the dynamics of a rarely found broken-symmetry spin state in binuclear complexes, which mixes the states [HS-LS] and [LS-HS] on a millisecond timescale. The slow exchange between these two states, which was identified by paramagnetic NMR spectroscopy in solutions of two spin-crossover iron(II) binuclear helicates that are amenable to molecular design, opens a path to double quantum dot cellular automata for information storage and processing.
Collapse
Affiliation(s)
- Dmitry Yu Aleshin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 11999, Moscow, Russia
| | - Rosa Diego
- Department de Quimica Inorganica and IN2UB, Universitat de Barcelona, Diagonal 647, 08028, Barcelona, Spain
| | - Leoní A Barrios
- Department de Quimica Inorganica and IN2UB, Universitat de Barcelona, Diagonal 647, 08028, Barcelona, Spain
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 11999, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy per. 9, 141700 Dolgoprudny, Moscow region, Russia
| | - Guillem Aromí
- Department de Quimica Inorganica and IN2UB, Universitat de Barcelona, Diagonal 647, 08028, Barcelona, Spain
| | - Valentin V Novikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 11999, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy per. 9, 141700 Dolgoprudny, Moscow region, Russia
| |
Collapse
|