1
|
Lin ZF, Yang GP, Jiang WJ, Chen JC, Liu YF. The Assembly of Cerium(III)-Containing Silicotungstate with Lewis Acid-Base Sites Enables the Selective C3-Alkenylation of Oxindole. Inorg Chem 2024; 63:19390-19395. [PMID: 39350542 DOI: 10.1021/acs.inorgchem.4c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A cerium(III)-containing silicotungstate, [H2N(CH3)2]10NaK[KCe(SiW11O39)2(H2O)]·18.5H2O (CeSiW), was successfully synthesized and characterized. Structure analysis reveals that CeSiW is composed of two {SiW11O39} units connected by one cerium(III) cation to form a typical 1:2 sandwich structure, which is further expanding into a 1D chain linked by K+ ions. The oxygen-enriched surfaces of {SiW11O39} units and open cerium sites provide abundant Lewis base and acid sites in CeSiW. As a result, CeSiW efficiently catalyzed the C3-alkenylation of oxindoles with aldehydes through the simultaneous activation of both reaction substrates on its crystal framework. Various 3-benzylidene-oxindoles are synthesized with excellent yields and high E-selectivity under solvent-free conditions.
Collapse
Affiliation(s)
- Zhou-Fu Lin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Guo-Ping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, China
- College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Wen-Jun Jiang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Jin-Cao Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Yu-Feng Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, China
- College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
2
|
Yang G, Liu H, Chen J, Lin X, Tan K, Dong Y, Liu Y, Wei Y. Dy/Ho-encapsulated tartaric acid-functionalized tungstoantimonates: heterogeneous catalysts for isoindolinone synthesis. Chem Commun (Camb) 2024; 60:10934-10937. [PMID: 39258442 DOI: 10.1039/d4cc03675a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Two novel rare earth-substituted tungstoantimonates [H2N(CH3)2]8Na12[Dy2(H2O)6(tar)(Sb2W21O72)]2·40H2O (DySbW) and [H2N(CH3)2]6Na14[Ho2(H2O)6(tar)(Sb2W21O72)]2·25H2O (HoSbW) (H4tar = tartaric acid) were synthesized. The meso-polyanions are alternately linked by {Na3(H2O)3} clusters and DL-tar ligands to form 1D chains. Notably, HoSbW exhibits excellent catalytic activity and high stability for the synthesis of isoindolinones using EtOH as a green solvent.
Collapse
Affiliation(s)
- Guoping Yang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
- College of Chemistry, Xinjiang University, Urumqi 830017, China.
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Haoqi Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| | - Jincao Chen
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| | - Xiaoling Lin
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| | - Kexin Tan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| | - Yayu Dong
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, Jiangxi, China.
| | - Yufeng Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
- College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Lu C, Tang Z, Wang D, Chen L, Zhao J. Advances in polyoxometalate-based electrochemical sensors in the last three years. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5133-5145. [PMID: 39007918 DOI: 10.1039/d4ay01090f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As a famous subclass of metal-oxide cluster materials, polyoxometalates (POMs) feature variable architectures, reversible multi-electron transport capability, catalytic activity, and redox capacity. These attributes endow POMs with great potential as promising electrode materials in electrochemical sensors (ECSs). Up to now, POM-based ECSs have been passionately studied, and diverse POM-based redox ECSs, aptasensors and immunosensors have emerged. And these POM-based ECSs generally demonstrate fast response, low detection limit, strong selectivity and high antijamming capability. This review mainly focuses on the remarkable advancement of POM-based ECSs in environmental monitoring, food safety and biomedicine from 2021, aiming to furnish theoretical insights that inform the design and development of innovative sensors.
Collapse
Affiliation(s)
- Changyuan Lu
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
Zhang Y, Cheng Z, Zeng B, Jiang J, Zhao J, Wang M, Chen L. Recent research progress of selenotungstate-based biomolecular sensing materials. Dalton Trans 2024; 53:10805-10813. [PMID: 38836698 DOI: 10.1039/d4dt01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Polyoxometalates (POMs) have drawn significant attention on account of their structural designability, compositional diversity and great potential applications. As an indispensable branch of POMs, selenotungstates (SeTs) have been synthesized extensively. Some SeTs have been applied as sensing materials for detecting biomarkers (e.g., metabolites, hormones, cancer markers). To gain a comprehensive understanding of advancements in SeT-based sensing materials, we present an overview that encapsulates the sensing performances and mechanisms of SeT-based biosensors. SeT-based biosensors are categorized into electrochemical catalytic biosensors, electrochemical affinity biosensors, "turn-off" fluorescence biosensors and "turn-on" fluorescence biosensors. We anticipate the expansive potential of SeT-based biosensors in wearable and implantable sensing technologies, which promises to catalyze significant breakthroughs in SeT-based biosensors.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhendong Cheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Miao Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
5
|
Liu Y, Liu G, Zeng B, Li Y, Chen L, Zhao J. 2,5-Thiophenedicarboxylic Acid Bridging Hexameric Ce III-Substituted Selenotungstate and Its Application for Detecting Mucin 1. Inorg Chem 2024; 63:7858-7868. [PMID: 38634470 DOI: 10.1021/acs.inorgchem.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The development of polyoxometalate chemistry not only is derived from the continuous discovery of novel polyoxometalates (POMs) but also stems from the exploitation of their new functionalities. In this work, we obtained a rigid sulfur-containing heterocyclic ligand-linking aggregate [N(CH3)4]10Na6H6[Ce8(H2O)26W8(HTDA)2(TDA)2O20][SeW4O18]2[SeW9O33]4·112H2O (1) (H2TDA = 2,5-thiophenedicarboxylic acid). Its polyanionic unit consists of one [Ce4(H2O)13W4O10(HTDA)(TDA)O10]18+ cluster and two kinds of Keggin-type [SeW4O18] and [SeW9O33] segments. It is noteworthy that H2TDA ligands not only work as connectors to link two symmetrical {[Ce4(H2O)13W4(HTDA)(TDA)O10][SeW4O18][SeW9O33]2}11- units but also function as ornaments to graft to the polyanionic backbone. Furthermore, 1 and 3,4-ethylenedioxythiophene (EDOT) were deposited on the glassy carbon electrode (GCE) by the electropolymerization (EPM) method, resulting in a 1-poly(3,4-ethylenedioxythiophene) (1-PEDOT) composite film, which can provide sufficient binding sites to immobilize Au nanoparticles (Au NPs). Hereafter, the Au NPs-immobilized 1-PEDOT modified electrode (Au/1-PEDOT/GCE) was used to construct an electrochemical aptasensor to detect mucin 1, showing a low detection limit of 29.5 fM in the Tris solution. This work not only demonstrates that rigid heterocyclic ligands are beneficial for the creation of novel rare-earth-substituted selenotungstate hybrids but also provides more enlightenment for POM-based materials used for electrochemical detection of cancer markers.
Collapse
Affiliation(s)
- Yu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
6
|
Niu B, Zhang M, Yan L, Yu A, Ma P, Wang J, Niu J. Two Tetra-Nuclear Ln-Substituted Prazine Dicarboxylic Acid-Functionalized Selenotungstates with Catalytic Oxidation of Thioether Properties. Inorg Chem 2023. [PMID: 37996253 DOI: 10.1021/acs.inorgchem.3c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Two two-dimensional Ln-substituted prazine dicarboxylic acid-functionalized selenotungstates Na3H9[(H2N(CH3)2]2{(Se4W27O100)[Ln4(H2O)8(Hpzdc)2(pzdc)]}·26H2O [Ln = Nd (1) and Ce (2)]; H2pzdc = 2,3-pyrazine dicarboxylic acid) have been synthesized by one-pot self-assembly strategy, in which the basic polyanion [Se4W27O100]22-was composed of two [SeW8O31]10- fragments, a [SeW9O33]8- segment and an intriguing {SeO} group, simultaneously tetra-nuclear Ln3+ ions with H2pzdc pendants were embedded. Compounds 1 and 2 showed excellent catalytic oxidation of thioether properties within a short time (20 min) with high 100% conversion and 98.9% selectivity. In addition, the pioneering Ln-substituted selenotungstates were used as catalysts to degrade sulfur mustard simulant 2-chloroethyl ethyl sulfide at room temperature with 99% conversion and 100% selectivity. The chemical kinetic experiment studies revealed that the catalytic reaction was in compliance with the first-order reaction, and the kinetic half-life (t1/2) values were 3.814 and 3.849 min, respectively.
Collapse
Affiliation(s)
- Bingxue Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Miao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Luting Yan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Anqi Yu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
7
|
Yang ZX, Liang XW, Lin D, Zheng Q, Huo Y. Heteroatom-Modulated Assembly of Hexalanthanoid-Containing Polyoxometalate-Based Coordination Networks. Inorg Chem 2023; 62:1466-1475. [PMID: 36656113 DOI: 10.1021/acs.inorgchem.2c03561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two series of lanthanoid (Ln)-containing polyoxometalates (POMs) {[Ln6(ampH)4(H2O)24-n(ampH2)n(PW11O39)2]·21H2O (Ln = Tb, n = 0 (1), Ln = Er, n = 1 (2)) and K2[Ln6(ampH)4(H2O)22(SiW11O39)2]·23H2O (Ln = Tb (3), Er (4)) (ampH2 = (aminomethyl) phosphonic acid)} have been synthesized with tri-lacunary Keggin-type POMs containing different types of heteroatoms. Compounds 1 and 2 display neutral organic-inorganic hybrid POM molecules containing {Ln6(ampH)4} ({Ln6}) cores sandwiched by two {PW11O39} units. By changing the heteroatoms from PV to SiIV, the extended 2D networks of 3 and 4 were successfully isolated where the adjacent {Ln6} clusters were connected by {SiW11O39} moieties. Luminescence performances and magnetic properties of 1-4 have been systematically surveyed. The solid-state fluorescence spectra of 1-4 display characteristic emissions of Ln components resulting from the 4f-4f transitions, and energy transfer from the POM segments to Ln3+ centers in 1 and 3 has been observed based on the lifetime decay behaviors. Furthermore, all compounds can be utilized as electrocatalysts toward reduction of nitrite with high stability.
Collapse
Affiliation(s)
- Zeng-Xi Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xue-Wei Liang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Dunmin Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Qiaoji Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Yu Huo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| |
Collapse
|
8
|
Xiang S, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions. CHEMOSPHERE 2022; 306:135517. [PMID: 35787882 DOI: 10.1016/j.chemosphere.2022.135517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Acetaminophen is a widely used analgesic throughout the world. Detection of acetaminophen has particular value in pharmacy and clinics. Electrochemical sensors assembled with advanced materials are an effective method for the rapid detection of acetaminophen. Graphene-based carbon nanomaterials have been extensively investigated for potential analytical applications in the last decade. In this article, we selected papers containing both graphene and acetaminophen. Bibliometrics was used to analyze the relationships and trends among these papers. The results show that the topic has grown at a high rate since 2009. Among them, the detection of acetaminophen by an electrochemical sensor based on graphene is the most important direction. Graphene has moved from being a primary sensing material to a substrate for immobilization of other active ingredients. In addition, the degradation of acetaminophen using graphene-modified electrodes is also an important direction. We analyzed the research history and current status of this topic through bibliometrics. Authors, institutions, countries, and key literature were discussed. We also proposed perspectives for this topic.
Collapse
Affiliation(s)
- Shuyan Xiang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
9
|
Jia X, Jiang J, Liu L, Meng L, Chen L, Zhao J. Two Innovative Fumaric Acid Bridging Lanthanide-Encapsulated Hexameric Selenotungstates Containing Mixed Building Units and Electrochemical Performance for Detecting Mycotoxin. Inorg Chem 2022; 61:10965-10976. [PMID: 35793494 DOI: 10.1021/acs.inorgchem.2c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two particular fumaric acid bridging lanthanide-encapsulated selenotungstates [H2N(CH3)2]16Na8[Ln3(H2O)7]2 [W4O8(C4H2O4) (C4H3O4)]2[SeW6O25]2[B-α-SeW9O33]4·46H2O [Ln = Ce3+ (1), La3+ (2)] were acquired by the deliberately designed step-by-step synthetic strategy, which are composed of four trilacunary Keggin [B-α-SeW9O33]8- and two original [SeW6O25]10- building units together with one fumaric acid bridging heterometallic [Ln3(H2O)7]2[W4O8(C4H2O4) (C4H3O4)]228+ entity. Particularly, this heterometallic cluster contains four fumaric acid ligands, which play two different roles: one works as the pendant decorating the cluster and the other acts as the linker connecting the whole structure. In addition, the 1@DDA hybrid material was produced through the cation exchange of 1 and dimethyl distearylammonium chloride (DDA·Cl) and its beehive-shaped film of 1@DDA was prepared by the breath figure method, which can be further used to establish an electrochemical biosensor for detecting a kind of mycotoxin-ochratoxin A (OX-A). The 1@DDA beehive-shaped film-based electrochemical biosensor exhibits good reproducibility and specific sensing toward OX-A with a low detection limit of 29.26 pM. These results highlight the huge feasibility of long-chain flexible ligands in building lanthanide-encapsulated selenotungstates with structural complexity and further demonstrate great electrochemical application potentiality of polyoxometalate-involved materials in bioanalysis, tumor diagnosis, and iatrology.
Collapse
Affiliation(s)
- Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lina Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
10
|
Yao MY, Liu YF, Li XX, Yang GP, Zheng ST. The largest Se-4f cluster incorporated polyoxometalate with high Lewis acid-base catalytic activity. Chem Commun (Camb) 2022; 58:5737-5740. [PMID: 35445228 DOI: 10.1039/d2cc01051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 4p-4f cluster incorporated polyoxometalate (POM), namely, H18{[(H4pic)4Eu10Se13O28(H2O)12](α-GeW9O34)4·40H2O (1-Eu, H4pic = isonicotinic acid), has been first synthesized and characterized. 1-Eu features an interesting four-shell structure, representing the largest Se-4f cluster incorporated POM known to date. Besides, 1-Eu exhibits excellent Lewis acid-base catalytic activity and reusablity in catalyzing the gram-scale dehydration condensation reaction of hydrazines and 1,3-diketones to synthesize polysubstituted pyrazoles.
Collapse
Affiliation(s)
- Meng-Ying Yao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yu-Feng Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China.
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Guo-Ping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China.
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
11
|
A unique organic-inorganic hybrid FeIII–PrIII-included 2-germano-20-tungstate and its electrochemical biosensing properties. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Veríssimo MIS, Evtuguin DV, Gomes MTSR. Polyoxometalate Functionalized Sensors: A Review. Front Chem 2022; 10:840657. [PMID: 35372262 PMCID: PMC8964365 DOI: 10.3389/fchem.2022.840657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Polyoxometalates (POMs) are a class of metal oxide complexes with a large structural diversity. Effective control of the final chemical and physical properties of POMs could be provided by fine-tuning chemical modifications, such as the inclusion of other metals or non-metal ions. In addition, the nature and type of the counterion can also impact POM properties, like solubility. Besides, POMs may combine with carbon materials as graphene oxide, reduced graphene oxide or carbon nanotubes to enhance electronic conductivity, with noble metal nanoparticles to increase catalytic and functional sites, be introduced into metal-organic frameworks to increase surface area and expose more active sites, and embedded into conducting polymers. The possibility to design POMs to match properties adequate for specific sensing applications turns them into highly desirable chemicals for sensor sensitive layers. This review intends to provide an overview of POM structures used in sensors (electrochemical, optical, and piezoelectric), highlighting their main functional features. Furthermore, this review aims to summarize the reported applications of POMs in sensors for detecting and determining analytes in different matrices, many of them with biochemical and clinical relevance, along with analytical figures of merit and main virtues and problems of such devices. Special emphasis is given to the stability of POMs sensitive layers, detection limits, selectivity, the pH working range and throughput.
Collapse
Affiliation(s)
- Marta I. S. Veríssimo
- CESAM, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- *Correspondence: Marta I. S. Veríssimo, ; M. Teresa S. R. Gomes,
| | | | - M. Teresa S. R. Gomes
- CESAM, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- *Correspondence: Marta I. S. Veríssimo, ; M. Teresa S. R. Gomes,
| |
Collapse
|
13
|
Han S, Dai R, Hu Y, Han L. Fluorometric and colorimetric detection of cerium(IV) ion using carbon dots and bathophenanthroline-disulfonate-ferrum(II) complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120295. [PMID: 34450572 DOI: 10.1016/j.saa.2021.120295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Cerium, an abundant lanthanide element, is widely used in human industry. The accumulation of Ce4+ ion, however, will damage the environment and biological organism. Therefore, its facile detection is highly needed. Herein, we design a hybrid sensing platform consisting of carbon dots (C-dots) and bathophenanthroline-disulfonate-Fe2+ complex (Bphen-Fe2+) for trace-level determination of Ce4+. Based on inner filter effect (IFE), the red-colored Bphen-Fe2+ complex severely quenches the fluorescence of C-dots. After addition of Ce4+, Fe2+ is oxidized to Fe3+, and the colorless Bphen-Fe3+ complex generates, which weakens the IFE efficiency and leads to the fluorescence recovery of C-dots. Meanwhile, due to the decreasing amount of Bphen-Fe2+ upon Ce4+ addition, the red color of the solution gradually fades, which enables visual detection of Ce4+ by the naked eyes. Under the optimized conditions, the C-dots/Bphen-Fe2+ system realizes the fluorometric and colorimetric sensing of Ce4+ in the range of 0.5-100 and 1.9-80 μM, with the limits of detection as low as 0.5 and 1.9 μM, respectively. This method also shows high selectivity over other common ions, and has an excellent applicability for monitoring of Ce4+ in real water samples.
Collapse
Affiliation(s)
- Sujie Han
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ruoyu Dai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yaoping Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo 315211, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Lei Han
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
14
|
Xie S, Wang D, Wang Z, Liu J, Chen L, Zhao J. Dual-heteroatom-templated lanthanoid-inserted heteropolyoxotungstates simultaneously comprising Dawson and Keggin subunits and their composite film applied for electrochemical immunosensing of auximone. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01246k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two unprecedented PIII–SbIII-heteroatom templated lanthanide-inserted heteropolyoxotungstates were obtained and their composite film was applied for the electrochemical immunosensing of auximone.
Collapse
Affiliation(s)
- Saisai Xie
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zixu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jiancai Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
15
|
Song N, Li Y, Wang Y, Wang M, Liu M, Chen L, Zhao J. Organic–inorganic hybrid phosphite-participating S-shaped penta-CeIII incorporated tellurotungstate as electrochemical enzymatic hydrogen peroxide for β-D-glucose detection. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00816e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyoxometalate chemistry has made rapid advances in innovative structural chemistry. The lower valence state and lone electron pair effect of subgroup-valence heteroatom Te(IV) can be introduced into the tungsten-oxygen system...
Collapse
|
16
|
Li HL, Lian C, Yang GY. A {Ti 6W 4}-Cluster-Substituted Polyoxotungstate: Synthesis, Structure, and Catalytic Oxidation Properties. Inorg Chem 2021; 60:14622-14628. [PMID: 34533302 DOI: 10.1021/acs.inorgchem.1c01643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel Ti-W-O-cluster-substituted tungstoantimonate (TA), [H2N(CH3)2]3Na4H9[{Ti6W4O18(OH)(H2O)3}(B-α-SbW9O33)3]·20H2O (1), has been made by hydrothermal reactions of trivacant [B-α-SbW9O33]9- units, Ti4+ cations, and WO42- anions in the presence of [H2N(CH3)2]·Cl and structurally characterized. Intriguingly, the polyoxoanion of 1 is constructed from three [B-α-SbW9O33]9- units and a previously unobserved decanuclear heterometallic Ti-W-O cluster [Ti6W4O18(OH)(H2O)3]11+ ({Ti6W4}) that is comprised of an octahedral [Ti6WO6(H2O)3]18+ cluster and an edge-sharing [W3O12(OH)]7- fragment via six W-O-Ti/W linkers. Furthermore, studies on the catalytic oxidation properties reveal that 1 possesses good catalytic activity toward the oxidation reactions of various sulfides and cyclooctene based on the environmentally friendly oxidant H2O2.
Collapse
Affiliation(s)
- Hai-Lou Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chen Lian
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
17
|
Liu G, Liu L, Gong T, Li Y, Chen L, Zhao J. Nicotinic-Acid-Ornamented Tetrameric Rare-Earth-Substituted Phospho(III)tungstates with the Coexistence of Mixed Keggin/Dawson Building Blocks and Its Honeycomb Nanofilm for Detecting Toxins. Inorg Chem 2021; 60:14457-14466. [PMID: 34499476 DOI: 10.1021/acs.inorgchem.1c02248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A fascinating class of nicotinic-acid-ornamented tetrameric rare-earth (RE)-substituted phospho(III)tungstates [NH2(CH3)2]10Na4H8[RE2(NA)(HNA)(H2O)6(W2O4)(β-H2P2IIIW13O49)(α-HPIIIW9O33)]2·22 H2O [RE = Nd3+ (1-Nd), Tb3+ (2-Tb), Dy3+ (3-Dy), Ho3+ (4-Ho), HNA = nicotinic acid] were isolated through a one-step reaction method of Na2WO4·2H2O, H3PO3, HNA, NH2(CH3)2·HCl, and RE(NO3)·6H2O. Of meticulous concern is that HPO32- was used as a template to construct tetrameric RE-substituted phospho(III)tungstates including mixed heteropolyoxotungstate building blocks. Their hybrid polyoxoanions are composed of two symmetrical [RE2(NA)(HNA)(H2O)6(W2O4)(β-H2P2IIIW13O49)(α-HPW9O33)]11- units linked by RE-O-W bonds. The symmetrical unit consists of one peculiar heterometal nicotinic-acid-ornamented [RE2(NA)(HNA)(W2O4)]9+ cluster connecting a pentavacant Dawson-like [β-H2P2W13O49]12- and a trivacant Keggin [α-HPW9O33]8- subunits. Furthermore, dimethyldioctadecylammonium chloride (DMDODA·Cl) was used to combine with 1-Nd in the CHCl3-H2O system through electrostatic interactions, leading to the 1-Nd@DMDODA composite material. The honeycomb-patterned film of the 1-Nd @DMDODA composite material was successfully constructed by using the breath figure method on a glassy carbon electrode, which can offer abundant binding sites to Au nanoparticles (nano-Au). Ulteriorly, Au-functionalized 1-Nd@DMDODA-modified electrode was utilized as an electrochemical sensor to detect ochratoxin A, showing a good detection limit of 1.19 pM.
Collapse
Affiliation(s)
- Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
18
|
Hydroxyl-and-carboxyl ligand concatenating multi-lanthanide substituted tellurotungstates and electrochemical detection of noradrenaline. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Liu L, Jiang J, Liu G, Jia X, Zhao J, Chen L, Yang P. Hexameric to Trimeric Lanthanide-Included Selenotungstates and Their 2D Honeycomb Organic-Inorganic Hybrid Films Used for Detecting Ochratoxin A. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35997-36010. [PMID: 34288662 DOI: 10.1021/acsami.1c10012] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two types of organic-inorganic hybrid structure-related lanthanide (Ln)-included selenotungstates (Ln-SeTs) [H2N(CH3)2]11Na7[Ce4(H2PTCA)2(H2O)12(HICA)]2[SeW4O17]2[W2O5]4[SeW9O33]4·64H2O (1, H3PTCA = 1,2,3-propanetricarboxylic acid, H2ICA = itaconic acid) and [H2N(CH3)2]6Na4[Ln4SeW8(H2O)14(H2PTCA)2O28] [SeW9O33]2·31H2O [Ln = Pr3+ (2), Nd3+ (3)] were obtained by Ln nature control. The primary frameworks of 1-3 are composed of trivacant Keggin-type [B-α-SeW9O33]8- and [SeW4Om]n- [Ln = Ce3+ (1), m = 17, n = 6; Ln = Pr3+ (2), Nd3+ (3), m = 18, n = 8] fragments bridged by organic ligands and Ln clusters. Intriguingly, Ln nature results in the degradation of hexameric 1 to trimeric 2-3. Besides, 1@DMDSA and 3@DMDSA composites (DMDSA·Cl = dimethyl distearylammonium chloride) were prepared through the cation exchange method, which were then reorganized to form two-dimensional (2D) honeycomb thin films by the breath figure method. Using these honeycomb thin films as electrode materials, the aptasensors were further established by utilizing methylene blue as an indicator and cDNA and Au nanoparticles as signal amplifiers to enhance the response signal so as to realize the purpose of ochratoxin A (OTA) detection. This work provides a new platform for detecting OTA and explores the application potential of POM-based composites in biological and clinical analyses.
Collapse
Affiliation(s)
- Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Peng Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
20
|
Kang X, Song Y, Zhao J, Li Y. Simultaneous determination of paracetamol and Dopamine, and detection of bisphenol a using Three-dimensional interconnected porous carbon functionalized with ionic liquid. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Alkali metal–lanthanide co-encapsulated 19-tungsto-2-selenate derivative and its electrochemical detection of uric acid. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Ma Y, Guo J, Chen Y, Yi Y, Zhu G. Electrochemical sensing of phenolics based on copper/cobalt/nitrogen co-doped hollow nanocarbon spheres. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Xiong J, Yang ZX, Ma P, Lin D, Zheng Q, Huo Y. pH-Controlled Assembly of Two Polynuclear Dy(III)-Containing Polytungstoarsenates with Magnetic and Luminescence Properties. Inorg Chem 2021; 60:7519-7526. [DOI: 10.1021/acs.inorgchem.1c00859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jia Xiong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Zeng-Xi Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People’s Republic of China
| | - Dunmin Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Qiaoji Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Yu Huo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| |
Collapse
|
24
|
Liu J, Wang D, Xu X, Li H, Zhao J, Chen L. Multi-Nuclear Rare-Earth-Implanted Tartaric Acid-Functionalized Selenotungstates and Their Fluorescent and Magnetic Properties. Inorg Chem 2021; 60:2533-2541. [PMID: 33492931 DOI: 10.1021/acs.inorgchem.0c03443] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A family of multinuclear rare-earth (RE)-implanted H2tart2--functionalized selenotungstates (STs) [H2N(CH3)2]13H{[W2O5(OH)2(H2tart)2](H2tart){[W3O6RE2(H2O)6][SeW9O33]2}2}·31H2O [RE = Eu3+ (1), Tb3+ (2), Dy3+ (3), Ho3+ (4), Y3+ (5); H4tart = d-tartaric acid] have been afforded by a simple one-pot aqueous reaction and were structurally characterized. Intriguingly, their isomorphous organic-inorganic hybrid anion {[W2O5(OH)2(H2tart)2](H2tart){[W3O6RE2(H2O)6][SeW9O33]2}2}14- includes two sandwich-type {[W3O6[RE2(H2O)6][SeW9O33]2}4- dimeric units with a W-O-RE heterometal core, which are further joined by two H2tart2--decorated dinuclear tungsten-oxo {W2O5(OH)2(H2tart)2} clusters and a bridging H2tart2- ligand, contributing to a surprising Mobius band-like configuration. It is worth emphasizing that three H2tart2- ligands coordinate with tungsten centers rather than RE cations. For all we know, 1-5 delegate the infrequent RE-implanted STs functionalized by triplicate H2tart2- bridges. Furthermore, fluorescent performances of 1-4 as well as magnetic properties of 2-4 have been surveyed. The solid-state fluorescence emission spectra prove that each of them undoubtedly shows the characteristic emission peaks of RE cores, while alternating-current susceptibility measurements suggest field-induced single-molecule magnetic behavior in 3.
Collapse
Affiliation(s)
- Jinglin Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Xin Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Hailou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|