1
|
Bhunia P, Gomila RM, Frontera A, Ghosh A. Shift of the reduction potential of nickel(II) Schiff base complexes in the presence of redox innocent metal ions. Dalton Trans 2024; 53:12316-12330. [PMID: 38984589 DOI: 10.1039/d4dt00953c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the objective of gaining insight into the modulation of the reduction potential of the Ni(II/I) couple, we have synthesized two mononuclear nickel(II) complexes, NiLen (H2Len = N,N'-bis(3-methoxysalicylidene)-1,2-diamino-2-methylpropane) and NiLpn (H2Lpn = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2,2-dimethylpropane) of two N2O4 donor ligands and recorded their cyclic voltammograms. Both the nickel complexes show reversible reduction processes for the Ni(II/I) couple in acetonitrile solution but the reduction potential of NiLpn (E1/2 = -1.883 V) is 188 mV more positive than that of NiLen (E1/2 = -2.071 V). In the presence of redox inactive metal ions (Li+, Na+, K+, Mg2+, Ca2+ and Ba2+), the reduction potentials are shifted by 49-331 mV and 99-435 mV towards positive values compared to NiLen and NiLpn, respectively. The shift increases with the decrease of the pKa of the respective aqua-complexes of the metal ion but is poorly co-linear; however, better linearity is found when the shift of the mono- and bi-positive metal ion aqua complexes is plotted separately. Spectrophotometric titrations of these two nickel complexes with the guest metal ions in acetonitrile showed a well-anchored isosbestic point in all cases, confirming the adduct formation of NiLen and NiLpn with the metal ions. Structural analysis of single crystals, [(NiLen)Li(H2O)2]·ClO4 (1), [(NiLpn)Li(H2O)]·ClO4 (2), [(NiLpn)2Na]·BF4 (3) and [(NiLpn)2Ba(H2O)(ClO4)]·ClO4 (4), also corroborates the heterometallic adduct formation. The orbital energies of the optimised heterometallic adducts from which electron transfers originated were calculated in order to explain the observed reduction process. A strong linear connection between the calculated orbital energies and the experimental E1/2 values was observed. According to MEP and 2D vector field plots, the largest shift for divalent metal ions is most likely caused by the local electric field that they impose in addition to Lewis acidity.
Collapse
Affiliation(s)
- Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India.
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India.
| |
Collapse
|
2
|
Bhunia P, Maity S, Ghosh TK, Mondal A, Mayans J, Ghosh A. Cu(II)-Ln(III) (Ln = Gd, Tb and Dy) complexes of an unsymmetrical N 2O 3 donor ligand: field induced SMM behaviour of Cu(II)-Tb(III) complexes. Dalton Trans 2024; 53:9171-9182. [PMID: 38742576 DOI: 10.1039/d4dt00304g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Three new hetero-metallic CuII-LnIII complexes [(CuL)Gd(NO3)3(CH3OH)]n (1), [(CuL)Tb(NO3)3(H2O)]·[CuL] (2) and [(CuL)Dy(NO3)3(H2O)]·[CuL] (3) have been synthesized using a mono-nuclear Cu(II) complex, [CuL], of an unsymmetrically di-condensed N2O3 donor Schiff base ligand, N-(3-methoxysalicylidene)-N-(salicylidene)-1,2-ethylenediamine (H2L). Single crystal X-ray crystallography revealed that complex 1 is a nitrate bridged 1D chain of dinuclear Cu(II)-Gd(III) units whereas in 2 and 3, the dinuclear Cu(II)-Ln(III) units are co-crystallized with a [CuL] unit. The Ln(III) centers are nine coordinated with the geometry of a spherical capped square antiprism for Gd and spherical tricapped trigonal prism for Tb and Dy. The geometry of the Cu(II) center is distorted octahedral for complex 1 and distorted square planar for complexes 2 and 3. Temperature-dependent molar magnetic susceptibility measurements in 1-3 revealed the presence of overall ferromagnetic coupling between the Cu(II) and Ln(III) centers. Notably, field induced single-molecule magnet behavior was witnessed in the Tb(III) derivative (2). The ab initio calculations indicated that upon application of an external magnetic field, the tunneling in the ground state of complex 2 gets reduced and thereby field-induced SMM behaviour is observed. Besides, in the case of complex 1, BS-DFT calculations were carried out to gain further insights into the magnetic exchange coupling interactions between the Cu(II) and Gd(III) centers.
Collapse
Affiliation(s)
- Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
| | - Souvik Maity
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
| | - Tanmoy Kumar Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal by-pass road, Bhauri, Bhopal 462066, MP, India
| | - Júlia Mayans
- Departament de Química Inorgànica I Orgànica, SeccióInorgànica and Institut de Nanosciència and Nanotecnologia (IN2UB), MartíiFranqués 1-11, 08028 Barcelona, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
| |
Collapse
|
3
|
Bhunia P, Gomila RM, Frontera A, Ghosh A. Combined effects of the lewis acidity and electric field of proximal redox innocent metal ions on the redox potential of vanadyl Schiff base complexes: an experimental and theoretical study. Dalton Trans 2023; 52:3097-3110. [PMID: 36786744 DOI: 10.1039/d3dt00024a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The reactivity of biological or synthetic metalloenzymes is modulated in the presence of redox innocent Lewis acidic metal ions as they change the redox potential of the redox active metal ions present in the active site of metalloenzymes. To study this effect, we synthesised a mono-nuclear V(IV) complex (VOL, 1) with an N2O4 donor bicompartmental ligand, characterized it by single-crystal X-ray crystallography and recorded its cyclic voltammogram in acetonitrile. The CV revealed a reversible redox process for the V(IV)/V(V) couple. The potential of the V(IV)/V(V) couple shifted to a more positive value when equivalent amounts of Li+, Na+, K+, Mg2+, Ca2+ and Ba2+ ions were added separately to its acetonitrile solution, but the extent of shift for Li+ and Mg2+ was much less than that of the other metal ions. The guest metal ions except Li+ and Mg2+ were accommodated in the outer compartment of VOL as confirmed by IR and UV-Vis spectral analysis. Single-crystal structural analysis of [(VOL)KPF6]2, (1·K) and [(VOL)Ba(ClO4)2(H2O)]n, (1·Ba) also confirmed the hetero-metallic adduct formation. The correlation of the shift of the V(IV/V) redox potential with the Lewis acidity of respective metal ions deviated appreciably from linearity. DFT calculations suggest that the shift in potential is probably controlled by local electric fields induced by those ions, as indicated by 2D vector electric field maps.
Collapse
Affiliation(s)
- Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India.
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India. .,Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
4
|
Novel phenoxo-bridged di- and tri-nuclear Cu(II) salamo-like complexes driven by various counter-anions. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Huang Y, Li X, Li WD, Dong WK. Experimental and theoretical investigation of a new non-symmetric salamo-like ligand and its tri-nuclear Zn(II) and Ni(II) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
A mono-nuclear Cu(II) complex of an unsymmetrical Schiff base ligand and its use to synthesise trinucler CuII2MnII complexes showing anion dependent SMM behaviour. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Dou L, Hu ZF, Feng LC, Dong WK. Differential study on the transition from a new polyhalogen-substituted unsymmetric salamo-based ligand to its Cu(II) and Co(II) complexes. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lin Dou
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Zhi-Fei Hu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Le-Chuan Feng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| |
Collapse
|
8
|
Dou L, Cai JQ, Feng LC, Dong WK, Duan J. Structure and luminescence of two coordination polymers with nonsymmetrical salamo-based ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2118053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lin Dou
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jie-Qiong Cai
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Le-Chuan Feng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
9
|
Feng LC, Dou L, Li XX, Dong WK. Investigation of two novel di- and tetra-nuclear Cu(II) bis(salamo)-type complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Dou L, Tong L, Yan YB, Deng YH, Dong WK. EXPERIMENTAL AND THEORETICAL STUDY OF A SANDWICH-LIKE PHENOXO-BRIDGED HETEROBIMETALLIC ZINC(II)–MANGANESE(III) 3-MeOSALPHEN COMPLEX. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622080054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Bhunia P, Gomila RM, Font-Bardia M, Frontera A, Ghosh A. A Ni(II) chetale of an unsymmetrical N2O3 donor ligand and its use as flexidentate metalloligand to synthesise heterometallic Ni(II)-Mn(II) complexes: recurrent CH···π and π-stacking motifs in the structures. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Zhang JQ, Yao GX, Yan YJ, Xu L, Zhang Y, Dong WK. Structurally characterized salamo-based mononuclear Cu(II) complex fluorogenic sensor with high selectivity for CN− and Cys-Cys. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Ghosh TK, Maity S, Ghosh S, Gomila RM, Frontera A, Ghosh A. Role of Redox-Inactive Metal Ions in Modulating the Reduction Potential of Uranyl Schiff Base Complexes: Detailed Experimental and Theoretical Studies. Inorg Chem 2022; 61:7130-7142. [PMID: 35467851 DOI: 10.1021/acs.inorgchem.2c00645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mononuclear uranyl complex, [UO2L] (1), has been synthesized with the ligand N,N'-bis(3-methoxy-2-hydroxybenzylidene)-1,6-diamino-3-azahexane (H2L). The complex showed a reversible U(VI)/U(V) redox couple in cyclic voltammetric measurements. The reduction potential of this couple showed a positive shift upon the addition of redox-inactive alkali- and alkaline-earth Lewis acidic metal ions (Li+, Na+, K+, Ca2+, Sr2+, and Ba2+) to an acetonitrile solution of complex 1. The positive shift of the reduction potential has been explained on the basis of the Lewis acidity and internal electric-field effect of the respective metal ions. The bimetallic complexes [UO2LLi(NO3)] (2), [UO2LNa(BF4)]2 (3), [UO2LK(PF6)]2 (4), [(UO2L)2Ca]·(ClO4)2·CH3CN (5), [(UO2L)2Sr(H2O)2]·(ClO4)2·CH3CN (6), and [(UO2L)2Ba(ClO4)]·(ClO4) (7) have also been isolated in the solid state by reacting complex 1 with the corresponding metal ions and characterized by single-crystal X-ray diffraction. Density functional theory calculations of the optimized [UO2LM]n+ complexes have been used to rationalize the experimental reduction and electric-field potentials imposed by the non-redox-active cations.
Collapse
Affiliation(s)
- Tanmoy Kumar Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Souvik Maity
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Soumavo Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Carta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Carta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India.,Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
14
|
Bhunia P, Mayans J, Escuer A, Ghosh A. An Unprecedented Dodecanuclear Copper(II) Complex Derived from an Unsymmetrical Schiff‐Base Ligand. ChemistrySelect 2022. [DOI: 10.1002/slct.202200321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pradip Bhunia
- Department of Chemistry University College of Science University of Calcutta, 92 A.P.C. Road Kolkata 700009 India
| | - Júlia Mayans
- Departament de Química Inorgànica I Orgànica Secció Inorgànica and Institut de Nanosciència and Nanotecnologia (IN2UB) Martíi Franqués 1–11 08028 Barcelona Spain
| | - Albert Escuer
- Departament de Química Inorgànica I Orgànica Secció Inorgànica and Institut de Nanosciència and Nanotecnologia (IN2UB) Martíi Franqués 1–11 08028 Barcelona Spain
| | - Ashutosh Ghosh
- Department of Chemistry University College of Science University of Calcutta, 92 A.P.C. Road Kolkata 700009 India
- Rani Rashmoni Green University Tarakeswar 712410 West Bengal India
| |
Collapse
|
15
|
Zhang JQ, Yao GX, La YT, Dong WK. A highly selective bis(salamo)-based fluorescent sensor for two-pronged recognitions to Cu2+ and Arg. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Das M, Das M, Ray S, Das UK, Laha S, Ray PP, Samanta BC, Maity T. Synthesis and crystal structures of two tri- and tetra-heterometallic Ni( ii)–Mn( ii)/Ni( ii)–Co( iii) complexes from two different Ni( ii)-containing metalloligands: effective catalytic oxidase activity and Schottky device approach. NEW J CHEM 2022. [DOI: 10.1039/d2nj03535a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of tri- and tetra-nuclear heterometallic Ni(ii)–Mn(ii)/Ni(ii)–Co(iii) complexes with effective catalytic oxidase activity and the Schottky device approach.
Collapse
Affiliation(s)
- Manik Das
- Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, West Bengal, India
| | - Mainak Das
- Department of Physics, Jadavpur University, Kolkata, India
| | - Subham Ray
- Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, West Bengal, India
| | - Uttam Kumar Das
- Department of Chemistry, School of Physical Sciences, Mahatma Gandhi Central University, Bihar, India
| | | | | | | | - Tithi Maity
- Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, West Bengal, India
| |
Collapse
|
17
|
Bhunia P, Maity S, Mayans J, Ghosh A. Templated synthesis of Ni( ii) complexes of unsymmetrical Schiff base ligands derived from 1,3-diamino-2-propanol: structural diversity and magnetic properties. NEW J CHEM 2022. [DOI: 10.1039/d1nj05638g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A Ferromagnetically coupled tetranuclear, an antiferromagnetically coupled hexanuclear and a mononuclear Ni(II) complex of new unsymmetrical Schiff base ligands derived from 1,3-diamino-2-propanol have been obtained with a slight change in the carbonyl compounds.
Collapse
Affiliation(s)
- Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India
| | - Souvik Maity
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India
| | - Júlia Mayans
- Departament de Química Inorgànica I Orgànica, Secció Inorgànica and Institut de Nanosciència and Nanotecnologia (IN2UB), Martíi Franqués 1-11, 08028 Barcelona, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India
- Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
18
|
Pu L, Li P, Li S, Xu W, Long H, Dong W. An investigation of structure, Hirshfeld surface, and fluorescence properties of two dinuclear Ni (II) and Zn (II) salamo‐type complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lu‐Mei Pu
- College of Science Gansu Agricultural University Lanzhou China
| | - Peng Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Shi‐Zhen Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Wei‐Bing Xu
- College of Science Gansu Agricultural University Lanzhou China
| | - Hai‐Tao Long
- College of Science Gansu Agricultural University Lanzhou China
| | - Wen‐Kui Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| |
Collapse
|
19
|
Li P, Li L, Li S, Dong W. Insight into two unusual stable homomultinuclear copper (II)‐based bis (salamo)‐type complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peng Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Li‐Li Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Shi‐Zhen Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Wen‐Kui Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| |
Collapse
|
20
|
Ding YJ, Li YJ, Li P, Xie KF, Dong WK. Insight into new mono- and tri-nuclear nickel(II)-based complexes supported by structural variation of salamo-like ligands. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Deng YH, Li RY, Zhang JQ, Wang YF, Li JT, Guo WT, Dong WK. A novel turn-on fluorogenic aldehyde-appended salamo-like copper(ii) complex probe for the simultaneous detection of S2O32− and GSH. NEW J CHEM 2021. [DOI: 10.1039/d1nj01445e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel salamo-like copper(ii) complex probe (ASC) behaves as a two-pronged sensor of S2O32− ions and GSH by a ‘turn-on’ fluorescence mechanism.
Collapse
Affiliation(s)
- Yun-Hu Deng
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Ruo-Yu Li
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Jin-Qiang Zhang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Yue-Fei Wang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Jian-Ting Li
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Wen-Ting Guo
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Wei-Kui Dong
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| |
Collapse
|