1
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
2
|
Deuter KL, Kather F, Linseis M, Bodensteiner M, Winter RF. The Emissive and Electrochemical Properties of Hypervalent Pyridine-Dipyrrolide Bismuth Complexes. Chemistry 2024:e202403761. [PMID: 39560686 DOI: 10.1002/chem.202403761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
We present a series of six hypervalent bismuth complexes Bi(R1PDPR2)X bearing ligands characterized by the pyridine-2,6-bis(pyrrolide) (PDP) structural motif. While bismuth holds considerable potential for facilitating efficient intersystem crossing (ISC), reports on phosphorescent molecular bismuth complexes are still scarce and mostly based on systems that exhibit inter- or intraligand charge transfer character of their optical excitations. Herein, the UV/vis absorptive, luminescent, and electrochemical properties of complexes Bi(R1PDPR2)X are explored, where the substituents R1 and R2, as well as the halide ligand X are varied. These compounds are characterized by an intense HOMO→LUMO transition of mixed ligand-to-metal charge transfer (LMCT) and interligand charge transfer (LL'CT) character, as shown by time-dependent density functional theory (TD-DFT) calculations. At 77 K in a 2-MeTHF matrix, these compounds exhibit red, long-lived phosphorescence with lifetimes ranging from 479 to 14 μs. Cyclic voltammetry measurements and TD-DFT calculations show that the substituents influence HOMO and LUMO energies to almost equal extent, resulting in nearly constant emission wavelengths throughout this series. Single-crystal X-ray diffraction studies of four of the six complexes exemplify the inherent Lewis acidity of the coordinated Bi3+ ion, in spite of its hypervalency.
Collapse
Affiliation(s)
- Katharina L Deuter
- Faculty for Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Felix Kather
- Faculty for Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Michael Linseis
- Faculty for Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Michael Bodensteiner
- Faculty for Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Rainer F Winter
- Faculty for Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
3
|
Zhang Z, Fu LZ, He P, Yi XY. Neutral mononuclear indium(III) photosensitizers for CO 2 photoreduction. Dalton Trans 2024; 53:17772-17776. [PMID: 39474851 DOI: 10.1039/d4dt02595d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Herein, neutral mononuclear indium(III) complexes (In-1-In-3) containing 2,6-di(1H-pyrrol-2-yl)pyridine and substituted dipyridylpyrrole pincer ligand were employed as photosensitizers (PS) in photocatalytic CO2 reduction. In-2 exhibits good photo-activity and selectivity, which is superior to the classic PS Ru(bpy)32+. The amount of CO generation is 28.4 μmol with a CO selectivity of 93% when using In-2 as a PS and CoPc as a catalyst in CH3CN media.
Collapse
Affiliation(s)
- Zaichao Zhang
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China.
| | - Li-Zhi Fu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Piao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
4
|
Valerio L, Hakey BM, Leary DC, Stockdale E, Brennessel WW, Milsmann C, Matson EM. Synthesis and Characterization of Isostructural Th(IV) and U(IV) Pyridine Dipyrrolide Complexes. Inorg Chem 2024; 63:9610-9623. [PMID: 38377955 PMCID: PMC11134498 DOI: 10.1021/acs.inorgchem.3c04391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
A series of pyridine dipyrrolide actinide(IV) complexes, (MesPDPPh)AnCl2(THF) and An(MesPDPPh)2 (An = U, Th, where (MesPDPPh) is the doubly deprotonated form of 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine), have been prepared. Characterization of all four complexes has been performed through a combination of solid- and solution-state methods, including elemental analysis, single crystal X-ray diffraction, and electronic absorption and nuclear magnetic resonance spectroscopies. Collectively, these data confirm the formation of the mono- and bis-ligated species. Time-dependent density functional theory has been performed on all four An(IV) complexes, providing insight into the nature of electronic transitions that are observed in the electronic absorption spectra of these compounds. Room temperature, solution-state luminescence of the actinide complexes is presented. Both Th(IV) derivatives exhibit strong photoluminescence; in contrast, the U(IV) species are nonemissive.
Collapse
Affiliation(s)
- Leyla
R. Valerio
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Brett M. Hakey
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Dylan C. Leary
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Erin Stockdale
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Carsten Milsmann
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ellen M. Matson
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
5
|
Zhang Y, Lee TS, Petersen JL, Milsmann C. Photophysical Studies of a Zr(IV) Complex with Two Pyrrolide-Based Tetradentate Schiff Base Ligands. Inorg Chem 2024; 63:9002-9013. [PMID: 38700497 PMCID: PMC11110004 DOI: 10.1021/acs.inorgchem.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The reaction of two equivalents of N,N'-bis(2-pyrrolylmethylidene)-1,2-phenylenediamine (H2bppda) with tetrabenzylzirconium provided the air- and moisture-stable eight-coordinate complex Zr(bppda)2. Temperature-dependent steady-state and time-resolved emission spectroscopy established weak photoluminescence (ΦPL = 0.4% at 293 K) by a combination of prompt fluorescence and thermally activated delayed fluorescence (TADF) upon visible light excitation at and around room temperature. TADF emission is strongly quenched by 3O2 and shows highly temperature-sensitive emission lifetimes of hundreds of microseconds. The lifetime of the lowest energy singlet excited state, S1, was established by transient absorption spectroscopy and shows rapid deactivation (τ = 142 ps) by prompt fluorescence and intersystem crossing to the triplet state, T1. Time-dependent density functional theory (TD-DFT) calculations predict moderate ligand-to-metal charge transfer (LMCT) contributions of 25-30% for the S1 and T1 states. A comparison of Zr(bppda)2 to related zirconium pyridine dipyrrolide complexes, Zr(PDP)2, revealed important electronic structure changes due to the eight-coordinate ligand environment in Zr(bppda)2, which were correlated to differences in the photophysical properties between the two compound classes.
Collapse
Affiliation(s)
- Yu Zhang
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02144, United States
| | - Tia S. Lee
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jeffrey L. Petersen
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
6
|
May AM, Dempsey JL. A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions. Chem Sci 2024; 15:6661-6678. [PMID: 38725519 PMCID: PMC11079626 DOI: 10.1039/d3sc05268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states.
Collapse
Affiliation(s)
- Ann Marie May
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599-3290 USA
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599-3290 USA
| |
Collapse
|
7
|
Russegger A, Fischer SM, Debruyne AC, Wiltsche H, Boese AD, Dmitriev RI, Borisov SM. Tunable Self-Referenced Molecular Thermometers via Manipulation of Dual Emission in Platinum(II) Pyridinedipyrrolide Complexes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11930-11943. [PMID: 38390631 PMCID: PMC10921383 DOI: 10.1021/acsami.3c19226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Optical temperature sensors based on self-referenced readout schemes such as the emission ratio and the decay time are crucial for a wide range of applications, with the former often preferred due to simplicity of instrumentation. This work describes a new group of dually emitting dyes, platinum(II) pincer complexes, that can be used directly for ratiometric temperature sensing without an additional reference material. They consist of Pt(II) metal center surrounded by a pyridinedipyrrolide ligand (PDP) and a terminal ligand (benzonitrile, pyridine, 1-butylimidazol or carbon monoxide). Upon excitation with blue light, these complexes exhibit green to orange emission, with quantum yields in anoxic toluene at 25 °C ranging from 13% to 86% and decay times spanning from 8.5 to 97 μs. The emission is attributed to simultaneous thermally activated delayed fluorescence (TADF) and phosphorescence processes on the basis of photophysical investigations and DFT calculations. Rather uniquely, simple manipulations in substituents of the PDP ligand and alteration of the terminal ligand allow fine-tuning of the ratio between TADF and phosphorescence from almost 100% TADF emission (Pt(MesPDPC6F5(BN)) to over 80% of phosphorescence (Pt(PhPDPPh(BuIm)). Apart from ratiometric capabilities, the complexes also are useful as decay time-based temperature indicators with temperature coefficients exceeding 1.5% K-1 in most cases. Immobilization of the dyes into oxygen-impermeable polyacrylonitrile produces temperature sensing materials that can be read out with an ordinary RGB camera or a smartphone. In addition, Pt(PhPDPPh)Py can be incorporated into biocompatible RL100 nanoparticles suitable for cellular nanothermometry, as we demonstrate with temperature measurements in multicellular colon cancer spheroids.
Collapse
Affiliation(s)
- Andreas Russegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Susanne M. Fischer
- Physical
and Theoretical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, Graz 8010, Austria
| | - Angela C. Debruyne
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medical and Health Sciences, Ghent University, C.
Heymanslaan 10, Ghent 9000, Belgium
| | - Helmar Wiltsche
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - A. Daniel Boese
- Physical
and Theoretical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, Graz 8010, Austria
| | - Ruslan I. Dmitriev
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medical and Health Sciences, Ghent University, C.
Heymanslaan 10, Ghent 9000, Belgium
- Ghent
Light Microscopy Core, Ghent University, Ghent 9000, Belgium
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| |
Collapse
|
8
|
Barth AT, Fajardo J, Sattler W, Winkler JR, Gray HB. Electronic Structures and Photoredox Chemistry of Tungsten(0) Arylisocyanides. Acc Chem Res 2023. [PMID: 37384787 DOI: 10.1021/acs.accounts.3c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
ConspectusThe high energy barriers associated with the reaction chemistry of inert substrates can be overcome by employing redox-active photocatalysts. Research in this area has grown exponentially over the past decade, as transition metal photosensitizers have been shown to mediate challenging organic transformations. Critical for the advancement of photoredox catalysis is the discovery, development, and study of complexes based on earth-abundant metals that can replace and/or complement established noble-metal-based photosensitizers.Recent work has focused on redox-active complexes of 3d metals, as photosensitizers containing these metals most likely would be scalable. Although low lying spin doublet ("spin flip") excited states of chromium(III) and metal-to-ligand charge transfer (MLCT) excited states of copper(I) have relatively long lifetimes, the electronic excited states of many other 3d metal complexes fall on dissociative potential energy surfaces, owing to the population of highly energetic σ-antibonding orbitals. Indeed, we and other investigators have shown that low lying spin singlet and triplet excited states of robust closed-shell metal complexes are too short-lived at room temperature to engage in bimolecular reactions in solutions. In principle, this problem could be overcome by designing and constructing 3d metal complexes containing strong field π-acceptor ligands, where thermally equilibrated MLCT or intraligand charge transfer excited states might fall well below the upper surfaces of dissociative 3d-3d states. Notably, such design elements have been exploited by investigators in very recent work on redox-active iron(II) systems. Another approach, one we have actively pursued, is to design and construct closed-shell complexes of earth-abundant 5d metals containing very strong π-acceptor ligands, where vertical excitation of 5d-5d excited states at the ground state geometry would require energies far above minima in the potential surfaces of MLCT excited states. As this requirement is met by tungsten(0) arylisocyanides, these complexes have been the focus of our work aimed at the development of robust redox-active photosensitizers.In the following Account, we review recent work on homoleptic tungsten(0) arylisocyanides. Originally reported by our group 45 years ago, W(CNAr)6 complexes have exceptionally large one- and two-photon absorption cross-sections. One- or two-photon excitation produces relatively long-lived (hundreds of nanoseconds to microsecond) MLCT excited states in high yields. These MLCT excited states, which are very strong reductants with E°(W+/*W0) = -2.2 to -3.0 V vs Fc[+/0], mediate photocatalysis of organic reactions with both visible and near-infrared (NIR) light. Here, we highlight design principles that led to the development of three generations of W(CNAr)6 photosensitizers; and we discuss likely steps in the mechanism of a prototypal W(CNAr)6-catalyzed base-promoted homolytic aromatic substitution reaction. Among the many potential applications of these very bright luminophores, two-photon imaging and two-photon-initiated polymerization are ones we plan to pursue.
Collapse
Affiliation(s)
- Alexandra T Barth
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Javier Fajardo
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Wesley Sattler
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Leary D, Zhang Y, Rodriguez JG, Akhmedov NG, Petersen JL, Dolinar BS, Milsmann C. Organometallic Intermediates in the Synthesis of Photoluminescent Zirconium and Hafnium Complexes with Pyridine Dipyrrolide Ligands. Organometallics 2023; 42:1220-1231. [PMID: 37324448 PMCID: PMC10266360 DOI: 10.1021/acs.organomet.3c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 03/12/2023]
Abstract
The two commercially available zirconium complexes tetrakis(dimethylamido)zirconium, Zr(NMe2)4, and tetrabenzylzirconium, ZrBn4, were investigated for their utility as starting materials in the synthesis of bis(pyridine dipyrrolide)zirconium photosensitizers, Zr(PDP)2. Reaction with one equivalent of the ligand precursor 2,6-bis(5-methyl-3-phenyl-1H-pyrrol-2-yl)pyridine, H2MePDPPh, resulted in the isolation and structural characterization of the complexes (MePDPPh)Zr(NMe2)2thf and (MePDPPh)ZrBn2, which could be converted to the desired photosensitizer Zr(MePDPPh)2 upon addition of a second equivalent of H2MePDPPh. Using the more sterically encumbered ligand precursor 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine, H2MesPDPPh, only ZrBn4 yielded the desired bis-ligand complex Zr(MesPDPPh)2. Careful monitoring of the reaction at different temperatures revealed the importance of the organometallic intermediate (cyclo-MesPDPPh)ZrBn, which was characterized by X-ray diffraction analysis and 1H NMR spectroscopy and shown to contain a cyclometalated MesPDPPh unit. Taking inspiration from the results for zirconium, syntheses for two hafnium photosensitizers, Hf(MePDPPh)2 and Hf(MesPDPPh)2, were established and shown to proceed through similar intermediates starting from tetrabenzylhafnium, HfBn4. Initial studies of the photophysical properties of the photoluminescent hafnium complexes indicate similar optical properties compared to their zirconium analogues.
Collapse
Affiliation(s)
- Dylan
C. Leary
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | | | - Jose G. Rodriguez
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Brian S. Dolinar
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
10
|
Hao H, Manßen M, Schafer LL. Tantalum ureate complexes for photocatalytic hydroaminoalkylation. Chem Sci 2023; 14:4928-4934. [PMID: 37181785 PMCID: PMC10171191 DOI: 10.1039/d3sc00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 05/16/2023] Open
Abstract
Using a tantalum ureate pre-catalyst, photocatalytic hydroaminoalkylation of unactivated alkenes with unprotected amines at room temperature is demonstrated. The combination of Ta(CH2SiMe3)3Cl2 and a ureate ligand with a saturated cyclic backbone resulted in this unique reactivity. Preliminary investigations of the reaction mechanism suggest that both the thermal and photocatalytic hydroaminoalkylation reactions begin with N-H bond activation and subsequent metallaaziridine formation. However, a select tantalum ureate complex, through ligand to metal charge transfer (LMCT), results in photocatalyzed homolytic metal-carbon bond cleavage and subsequent addition to unactivated alkene to afford the desired carbon-carbon bond formation. Origins of ligand effects on promoting homolytic metal-carbon bond cleavage are explored computationally to support enhanced ligand design efforts.
Collapse
Affiliation(s)
- Han Hao
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Manfred Manßen
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
11
|
Gowda AS, Lee TS, Rosko MC, Petersen JL, Castellano FN, Milsmann C. Long-Lived Photoluminescence of Molecular Group 14 Compounds through Thermally Activated Delayed Fluorescence. Inorg Chem 2022; 61:7338-7348. [PMID: 35507416 DOI: 10.1021/acs.inorgchem.2c00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photoluminescent molecules exploiting the sizable spin-orbit coupling constants of main group metals and metalloids to access long-lived triplet excited states are relatively rare compared to phosphorescent transition metal complexes. Here we report the synthesis of three air- and moisture-stable group 14 compounds E(MePDPPh)2, where E = Si, Ge, or Sn and [MePDPPh]2- is the doubly deprotonated form of 2,6-bis(5-methyl-3-phenyl-1H-pyrrol-2-yl)pyridine. In solution, all three molecules exhibit exceptionally long-lived triplet excited states with lifetimes in the millisecond range and show highly efficient photoluminescence (Φ ≤ 0.49) due to competing prompt fluorescence and thermally activated delayed fluorescence at and around room temperature. Temperature-dependent steady-state emission spectra and photoluminescent lifetime measurements provided conclusive evidence for the two distinct emission pathways. Picosecond transient absorption spectroscopy allowed further analysis of the intersystem crossing (ISC) between singlet and triplet manifolds (τISC = 0.25-3.1 ns) and confirmed the expected trend of increased ISC rates for the heavier elements in otherwise isostructural compounds.
Collapse
Affiliation(s)
- Anitha S Gowda
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Tia S Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jeffrey L Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
12
|
Hakey BM, Leary DC, Lopez LM, Valerio LR, Brennessel WW, Milsmann C, Matson EM. Synthesis and Characterization of Pyridine Dipyrrolide Uranyl Complexes. Inorg Chem 2022; 61:6182-6192. [PMID: 35420825 PMCID: PMC9044449 DOI: 10.1021/acs.inorgchem.2c00348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first actinide complexes of the pyridine dipyrrolide (PDP) ligand class, (MesPDPPh)UO2(THF) and (Cl2PhPDPPh)UO2(THF), are reported as the UVI uranyl adducts of the bulky aryl substituted pincers (MesPDPPh)2- and (Cl2PhPDPPh)2- (derived from 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2MesPDPPh, Mes = 2,4,6-trimethylphenyl), and 2,6-bis(5-(2,6-dichlorophenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2Cl2PhPDPPh, Cl2Ph = 2,6-dichlorophenyl), respectively). Following the in situ deprotonation of the proligand with lithium hexamethyldisilazide to generate the corresponding dilithium salts (e.g., Li2ArPDPPh, Ar = Mes of Cl2Ph), salt metathesis with [UO2Cl2(THF)2]2 afforded both compounds in moderate yields. The characterization of each species has been undertaken by a combination of solid- and solution-state methods, including combustion analysis, infrared, electronic absorption, and NMR spectroscopies. In both complexes, single-crystal X-ray diffraction has revealed a distorted octahedral geometry in the solid state, enforced by the bite angle of the rigid meridional (ArPDPPh)2- pincer ligand. The electrochemical analysis of both compounds by cyclic voltammetry in tetrahydrofuran (THF) reveals rich redox profiles, including events assigned as UVI/UV redox couples. A time-dependent density functional theory study has been performed on (MesPDPPh)UO2(THF) and provides insight into the nature of the transitions that comprise its electronic absorption spectrum.
Collapse
Affiliation(s)
- Brett M Hakey
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Dylan C Leary
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lauren M Lopez
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Leyla R Valerio
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
13
|
Dierks P, Vukadinovic Y, Bauer M. Photoactive iron complexes: more sustainable, but still a challenge. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01112j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
With the “Criticality Score” used as a benchmark for sustainability – potentials, strategies and challenges are discussed to replace noble metal compounds in photosensitizers by the sustainable alternative iron.
Collapse
Affiliation(s)
- Philipp Dierks
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Yannik Vukadinovic
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| |
Collapse
|
14
|
Yang M, Sheykhi S, Zhang Y, Milsmann C, Castellano FN. Low power threshold photochemical upconversion using a zirconium(iv) LMCT photosensitizer. Chem Sci 2021; 12:9069-9077. [PMID: 34276936 PMCID: PMC8261719 DOI: 10.1039/d1sc01662h] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
The current investigation demonstrates highly efficient photochemical upconversion (UC) where a long-lived Zr(iv) ligand-to-metal charge transfer (LMCT) complex serves as a triplet photosensitizer in concert with well-established 9,10-diphenylanthracene (DPA) along with newly conceived DPA-carbazole based acceptors/annihilators in THF solutions. The initial dynamic triplet-triplet energy transfer (TTET) processes (ΔG ∼ -0.19 eV) featured very large Stern-Volmer quenching constants (K SV) approaching or achieving 105 M-1 with bimolecular rate constants between 2 and 3 × 108 M-1 s-1 as ascertained using static and transient spectroscopic techniques. Both the TTET and subsequent triplet-triplet annihilation (TTA) processes were verified and throughly investigated using transient absorption spectroscopy. The Stern-Volmer metrics support 95% quenching of the Zr(iv) photosensitizer using modest concentrations (0.25 mM) of the various acceptor/annihilators, where no aggregation took place between any of the chromophores in THF. Each of the upconverting formulations operated with continuous-wave linear incident power dependence (λ ex = 514.5 nm) down to ultralow excitation power densities under optimized experimental conditions. Impressive record-setting η UC values ranging from 31.7% to 42.7% were achieved under excitation conditions (13 mW cm-2) below that of solar flux integrated across the Zr(iv) photosensitizer's absorption band (26.7 mW cm-2). This study illustrates the importance of supporting the continued development and discovery of molecular-based triplet photosensitizers based on earth-abundant metals.
Collapse
Affiliation(s)
- Mo Yang
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Sara Sheykhi
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Yu Zhang
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown West Virginia 26506 USA
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown West Virginia 26506 USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| |
Collapse
|
15
|
Hakey BM, Leary DC, Rodriguez JG, Martinez JC, Vaughan NB, Darmon JM, Akhmedov NG, Petersen JL, Dolinar BS, Milsmann C. Effects of 2,6‐Dichlorophenyl Substituents on the Coordination Chemistry of Pyridine Dipyrrolide Iron Complexes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Brett M. Hakey
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Dylan C. Leary
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Jose G. Rodriguez
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Jordan C. Martinez
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Nicholas B. Vaughan
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | | | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Brian S. Dolinar
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| |
Collapse
|
16
|
Zhou Y, He P, Mo XF, Liu C, Gan ZL, Tong HX, Yi XY. Neutral Cyclometalated Ir(III) Complexes with Pyridylpyrrole Ligand for Photocatalytic Hydrogen Generation from Water. Inorg Chem 2021; 60:6266-6275. [PMID: 33870688 DOI: 10.1021/acs.inorgchem.0c03812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To explore structure-activity relationships with respect to light-harvesting behavior, a family of neutral iridium complexes [Ir(ppy)2(LR)] 1-4 (where ppy = 2-phenylpyridine, and N̂N = 2-(1H-pyrrol-2-yl)pyridine and its functionalized derivatives) were designed and synthesized. The structural modifications in metal complexes are accomplished through the attributions of electron-donating CH3 in 2, OCH3 in 3, and electron-withdrawing CF3 in 4. The structural analysis displays that the pyridylpyrrole acts as one-negative charged bidentated ligand to chelate the iridium center. The electrochemical and photophysical properties of these complexes were systematically studied. The neutral 1-4 as well as the ionic structurally analogous [Ir(ppy)2(bpy)](PF6) (5) were utilized as PSs in photocatalytic hydrogen generation from water with [Co(bpy)3](PF6)2 as catalyst and triethanolamine (TEOA) as electron sacrificial agent in the presence of salt LiCl. Complex 1 maintains activity for more than 144 h under irradiation, and the total turnover number is up to 1768. The electrochemical properties and the quenching reaction indicate the H2 generation by neutral complexes 1-4 is involved exclusively in the oxidative quenching process.
Collapse
Affiliation(s)
- Yi Zhou
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Piao He
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Xiu-Fang Mo
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Zhi-Liang Gan
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Hai-Xia Tong
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, People's Republic of China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, People's Republic of China
| |
Collapse
|