1
|
Cai B, Meng Y. The crystal structure of catena-[nitrato- κ
2
O, O′-( μ
3-3-iodobenzene-1,2-dicarboxylato- κ
4
O: O′: O″, O‴)-(2,2′:6′,2″-terpyridine- κ
3
N, N′, N″)lanthanum(III)], C 23H 14IN 4O 7La. Z KRIST-NEW CRYST ST 2023. [DOI: 10.1515/ncrs-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
C23H14IN4O7La, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 8.2438(3) Å, b = 12.3786(5) Å, c = 12.6230(5) Å, α = 111.802(1)°, β = 91.144(1)°, γ = 100.6470(10)°, V = 1169.86(8) Å3, Z = 2, R
gt(F) = 0.0313, wR
ref(F
2) = 0.1051, T = 296 K.
Collapse
Affiliation(s)
- Bin Cai
- College of Materials and Chemical Engineering, Henan University of Urban Construction , Pingdingshan 467036 , Henan , P. R. China
| | - Yuning Meng
- College of Materials and Chemical Engineering, Henan University of Urban Construction , Pingdingshan 467036 , Henan , P. R. China
| |
Collapse
|
2
|
Metal-Organic Framework vs. Coordination Polymer—Influence of the Lanthanide on the Nature of the Heteroleptic Anilate/Terephtalate 3D Network. CRYSTALS 2022. [DOI: 10.3390/cryst12060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metal-organic frameworks (MOFs), whose definition has been regularly debated, are a sub-class of coordination polymers (CPs) which may feature both an overall 3D architecture and some degree of porosity. In this context, MOFs based on lanthanides (Ln-MOFs) could find many applications due to the combination of sorption properties and magnetic/luminescent behaviors. Here we report rare examples of 3D Ln-CPs based on anilate linkers, obtained under solvothermal conditions using a heteroleptic strategy. The three compounds of formula [Yb2(μ-ClCNAn)2(μ-F4BDC)(H2O)4]·(H2O)3 (1), [Er2(μ-ClCNAn)2(μ-F4BDC)(H2O)4]·(H2O)4 (2) and [Eu2(μ-ClCNAn)2(μ-F4BDC)(H2O)6] (3) have been characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and optical measurements. Structural characterization revealed that compounds 1 and 2 present an interesting MOF architecture with extended rectangular cavities which are only filled with water molecules. On the other hand, compound 3 shows a much more complex topology with no apparent cavities. We discuss here the origins of such differences and highlight the crucial role of the Ln(III) ion nature for the topology of the CP. Compounds 1 and 2 now offer a playground to investigate the possible synergy between gas/solvent sorption and magnetic/luminescent properties of Ln-MOFs.
Collapse
|
3
|
Gu S, Yang X, jiang Q, Luo Y, Wang D, Shi P. Insights into the crystal structure and optical property for complexes of iminodiacetic‐terpyridine. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shunxin Gu
- Jiangsu Ocean University School of Environmental and Chemical Engineering CHINA
| | - Xinda Yang
- Tongji University School of Chemical Science and Engineering CHINA
| | - qin jiang
- Jiangsu Ocean University School of Enviromental and Chemical Engineering 59 Cangwu Road 222005 Lianyungang CHINA
| | - Yuhui Luo
- Jiangsu Ocean University School of Environmental and Chemical Engineering CHINA
| | - Daqi Wang
- Liaocheng University School of Chemistry CHINA
| | - Pengfei Shi
- Jiangsu Ocean University School of Environmental and Chemical Engineering CHINA
| |
Collapse
|
4
|
Zhang S, Chen L, Xie J, Zhang Y, Huang F, Wang X, Li K, Zhai F, Yang Q, Chen L, Wang Y, Dai X, Chai Z, Wang S. Turn-up Luminescent Sensing of Ultraviolet Radiation by Lanthanide Metal-Organic Frameworks. Inorg Chem 2022; 61:4561-4565. [PMID: 35261233 DOI: 10.1021/acs.inorgchem.2c00250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here, we report a series of two-dimensional lanthanide metal-organic frameworks Ln-DBTPA (where DBTPA = 2,5-dibromoterephthalic acid and Ln = Tb (1), Eu (2), or Gd (3)) showing a unique turn-up responsiveness toward ultraviolet (UV) radiation. The luminescence enhancement was derived from the accumulated radicals that can promote the intersystem crossing process. The compound 1 shows an ultralow detection limit of 9.1 × 10-9 J toward UV radiation, representing a new type of luminescent UV detectors.
Collapse
Affiliation(s)
- Sida Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian Xie
- School of Life Science, School of Civil Engineering, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Feng Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xia Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fuwan Zhai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qian Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Thulasi Karunakaran S, Pavithran R, Sajeev M, Mohan Mohan Rema S. Photocatalytic degradation of methylene blue using a manganese based metal organic framework. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
6
|
Lu H, Xu M, Zheng Z, Liu Q, Qian J, Zhang ZH, He MY, Qian Y, Wang JQ, Lin J. Emergence of Thorium-Based Polyoxo Clusters as a Platform for Selective X-ray Dosimetry. Inorg Chem 2021; 60:18629-18633. [PMID: 34851629 DOI: 10.1021/acs.inorgchem.1c03182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A brand-new application of thorium-bearing clusters in the field of ionizing radiation detection is exemplified by two novel hexanuclear thorium clusters, Th-bppCOO-1 and Th-bppCOO-2, which incorporate carboxylate-functionalized 2,6-di(pyrazol-1-yl)pyridine ligands. Notably, Th-bppCOO-1 is composed of an unprecedented [Th6(OH)4O4(H2O)5]12+ secondary building unit, the Th6 core of which is decorated by five H2O molecules. Furthermore, selective photoluminescence quenching responses of Th-bppCOO-1 and Th-bppCOO-2 toward X-ray over UV radiation have been demonstrated for the first time.
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Miaomiao Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Qiao Liu
- Department of Physics and Astronomy, Carleton College, 1 North College Street, Northfield, Minnesota 55057, United States
| | - Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
Ashoka Sahadevan S, Manna F, Abhervé A, Oggianu M, Monni N, Mameli V, Marongiu D, Quochi F, Gendron F, Le Guennic B, Avarvari N, Mercuri ML. Combined Experimental/Theoretical Study on the Luminescent Properties of Homoleptic/Heteroleptic Erbium(III) Anilate-Based 2D Coordination Polymers. Inorg Chem 2021; 60:17765-17774. [PMID: 34784217 DOI: 10.1021/acs.inorgchem.1c02386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis, structural and photophysical characterization, and theoretical studies on homo/heteroleptic neutral 2D-layered coordination polymers (CPs), obtained by combining the ErIII ion with chlorocyananilate (ClCNAn) and/or tetrafluoroterephthalate (F4BDC) linkers, are herein reported. The structure of the heteroleptic ErIII-based CP, formulated as [Er2(ClCNAn)2(F4BDC)(DMSO)6]n (1) is also reported. 1 crystallizes in the triclinic P1̅ space group, and the structure consists of neutral 2D layers formed by ErIII ions linked through the two linkers oriented in such a way that the neighboring 2D layers are eclipsed along the a axis, leading to parallelogram-like cavities. Photophysical measurements highlight the prominent role of chlorocyananilate linkers as optical antennas toward lanthanide ions, while wave-function-theory analysis supports the experimental findings, providing evidence for the effect of ligand substitution on the luminescence properties of homo/heteroleptic 2D CPs.
Collapse
Affiliation(s)
- Suchithra Ashoka Sahadevan
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, Bivio per Sestu, Monserrato, Cagliari I-09042, Italy.,Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Fabio Manna
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, Bivio per Sestu, Monserrato, Cagliari I-09042, Italy
| | - Alexandre Abhervé
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Mariangela Oggianu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, Bivio per Sestu, Monserrato, Cagliari I-09042, Italy.,Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), Cagliari Unit, Via Giuseppe Giusti 9, Firenze 50121, Italy
| | - Noemi Monni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, Bivio per Sestu, Monserrato, Cagliari I-09042, Italy.,Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), Cagliari Unit, Via Giuseppe Giusti 9, Firenze 50121, Italy
| | - Valentina Mameli
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, Bivio per Sestu, Monserrato, Cagliari I-09042, Italy.,Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), Cagliari Unit, Via Giuseppe Giusti 9, Firenze 50121, Italy
| | - Daniela Marongiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Cagliari I-09042, Italy
| | - Francesco Quochi
- Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), Cagliari Unit, Via Giuseppe Giusti 9, Firenze 50121, Italy.,Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Cagliari I-09042, Italy
| | - Frédéric Gendron
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Maria Laura Mercuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, Bivio per Sestu, Monserrato, Cagliari I-09042, Italy.,Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), Cagliari Unit, Via Giuseppe Giusti 9, Firenze 50121, Italy
| |
Collapse
|
8
|
Qian J, Lu H, Zheng Z, Xu M, Qian Y, Zhang ZH, Wang JQ, He MY, Lin J. Achieving colour tuneable and white-light luminescence in a large family of dual-emission lanthanide coordination polymers. Dalton Trans 2021; 50:14325-14331. [PMID: 34558579 DOI: 10.1039/d1dt01618k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expanding the family of lanthanide terpyridine coordination polymers has yielded eighteen new complexes with two different phases, Ln(TPC)2(HCOO)(H2O) (Ln-1) and Ln(TPC)(HCOO)2 (Ln-2) (Ln = Sm-Lu, except Tm). Both structures are composed of lanthanide cations interconnected by 2,2':6',2''-terpyridine-4'-carboxylate ligands to yield one-dimensional chain topologies. However, the incorporation of an additional crystallographically unique decorative TPC ligand into Ln-1 gives rises to a distinct phase. The encapsulation of both metal- and ligand-based phosphors within single coordination polymers leads to dual-emission of the afforded materials. Furthermore, judicious lanthanide doping in heterometallic Ln-1 and Ln-2 allows for fine-tuning the photoluminescent colours over a wide range of gamut. Such a combination showcases the capability to fine-tune the emission colours from deep green, to red, and to blue. In addition, direct white-light emission upon UV excitation can be achieved in the SmxGd1-x-1 system.
Collapse
Affiliation(s)
- Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Miaomiao Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jian Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Theppitak C, Kielar F, Dungkaew W, Sukwattanasinitt M, Kangkaew L, Sahasithiwat S, Zenno H, Hayami S, Chainok K. The coordination chemistry of benzhydrazide with lanthanide(iii) ions: hydrothermal in situ ligand formation, structures, magnetic and photoluminescence sensing properties. RSC Adv 2021; 11:24709-24721. [PMID: 35481060 PMCID: PMC9037042 DOI: 10.1039/d1ra03106f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
The influence of synthetic conditions on the solid-state structural formation of lanthanide(iii) complexes based on a hydrazide ligand have been investigated and reported. Depending on the solvents and reaction temperatures, the reactions of hydrated Ln(NO3)3 with a benzohydrazide (bzz) ligand afforded three classes of lanthanide(iii) coordination complexes viz. [Ln(bzz)(NO3)](NO3)2 (1Ln; Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5)), [Ln(bzz)(ben)3(H2O)]·H2O (2Ln; Ln = Pr (6), Nd (7), Sm (8), Eu (9), Gd (10), Tb (11), Dy (12), Er (13)), and [Ln3(ben)3] (3Ln; Ln = Eu (14), Gd (15), Tb (16), Dy (17), Er (18), Tm (19), Yb (20), Lu (21)). Complexes 1-5 in series 1Ln were isolated by slow evaporation of their isopropanol solutions at ambient temperature, and the complexes display similar discrete structures bearing distinct intermolecular N-H⋯O hydrogen bonds to generate a three-dimensional (3D) supramolecular architecture. Complexes 6-13 in series 2Ln were obtained under hydrothermal conditions at 110 °C where the in situ generated benzoate (ben) ligands participated in the formation of one-dimensional (1D) coordination polymers (CPs) with the bzz ligands. At a temperature of 145 °C the hydrothermal conditions result in the formation of the thermodynamically more stable products of 14-21 in series 3Ln, in which the bzz ligand underwent complete in situ hydrolysis to create the ben ligand. These coordination assemblies feature 1D zigzag chains that are formed by unusual low coordination numbers of the six- and seven-fold coordinated Ln3+ centers bridged by the ben ligands in μ 2- and μ 3-coordination modes. Notably, the chain structures of 2Ln can be transformed into the zigzag tape-like structures of 3Ln upon heating the crystalline samples to 400 °C in air. In the solid state at room temperature, the Eu- (2, 9, 14) and Tb- (4, 11, 16) containing complexes emit red and green light, respectively. The luminescence investigations show that the Eu- (9, 14) and Tb-(11, 16) based CPs could be used as fluorescent probes for acetone and Co2+ ions via an energy competition mechanism. Meanwhile, the Gd- (10, 15) and Dy- (12, 17) based CPs show typical antiferromagnetic interactions.
Collapse
Affiliation(s)
- Chatphorn Theppitak
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University Pathum Thani 12121 Thailand
- Department of Chemistry, Faculty of Science and Technology, Thammasat University Pathum Thani 12121 Thailand
| | - Filip Kielar
- Department of Chemistry, Faculty of Science, Naresuan University Phitsanulok 65000 Thailand
| | - Winya Dungkaew
- Department of Chemistry, Faculty of Science, Mahasarakham University Maha Sarakham 44150 Thailand
| | | | - Laongdao Kangkaew
- National Metal and Materials Technology Center (MTEC), The National Science and Technology Development Agency Pathum Thani 12121 Thailand
| | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), The National Science and Technology Development Agency Pathum Thani 12121 Thailand
| | - Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology and Institute of Pulsed Power Science, Ku-mamoto University 2-39-1 Kurokami, Chuoku Kumamoto 860-8555 Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology and Institute of Pulsed Power Science, Ku-mamoto University 2-39-1 Kurokami, Chuoku Kumamoto 860-8555 Japan
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University Pathum Thani 12121 Thailand
| |
Collapse
|
10
|
Ayscue RL, Vallet V, Bertke JA, Réal F, Knope KE. Structure-Property Relationships in Photoluminescent Bismuth Halide Organic Hybrid Materials. Inorg Chem 2021; 60:9727-9744. [PMID: 34128679 DOI: 10.1021/acs.inorgchem.1c01025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Seven novel bismuth(III)-halide phases, Bi2Cl6(terpy)2·0.5(H2O) (1), Bi2Cl4(terpy)2(k2-TC)2(2) (TC = 2-thiophene monocarboxylate), BiCl(terpy)(k2-TC)2 (3A-Cl), BiBr(terpy)(k2-TC)2 (3A-Br), BiCl(terpy)(k2-TC)2 (3B-Cl), [BiCl(terpy)(k2-TC)2][Bi(terpy)(k2-TC)3]·0.55(TCA) (4), [BiBr3(terpy)(MeOH)] (5), and [BiBr2(terpy)(k2-TC)][BiBr1.16(terpy)(k2-TC)1.84] (6), were prepared under mild synthetic conditions from methanolic/aqueous solutions containing BiX3 (X = Cl, Br) and 2,2':6',2″-terpyridine (terpy) and/or 2-thiophene monocarboxylic acid (TCA). A heterometallic series, 3A-Bi1-xEuxCl, with the general formula Bi1-xEuxCl(terpy)(k2-TC)2 (x = 0.001, 0.005, 0.01, 0.05) was also prepared through trace Eu doping of the 3A-Cl phase. The structures were determined through single-crystal X-ray diffraction and are built from a range of molecular units including monomeric and dimeric complexes. The solid-state photoluminescent properties of the compounds were examined through steady-state and time-resolved methods. While the homometallic phases exhibited broad green to yellow emission, the heterometallic phases displayed yellow, orange, and red emission that can be attributed to the simultaneous ligand/Bi-halide and Eu centered emissions. Photoluminescent color tuning was achieved by controlling the relative intensities of these concurrent emissions through compositional modifications including the Eu doping percentage. Notably, all emissive homo- and heterometallic phases exhibited rare visible excitation pathways that based on theoretical quantum mechanical calculations are attributed to halide-metal to ligand charge transfer (XMLCT). Through a combined experimental and computational approach, fundamental insight into the structure-property relationships within these Bi halide organic hybrid materials is provided.
Collapse
Affiliation(s)
- R Lee Ayscue
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC 20057, United States
| | - Valérie Vallet
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC 20057, United States
| | - Florent Réal
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Karah E Knope
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC 20057, United States
| |
Collapse
|