1
|
Yang X, Xu L, Fang D, Zhang A, Xiao C. Progress in phenanthroline-derived extractants for trivalent actinides and lanthanides separation: where to next? Chem Commun (Camb) 2024; 60:11415-11433. [PMID: 39235311 DOI: 10.1039/d4cc03810j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Spent nuclear fuel (SNF) released from reactors possesses significant radioactivity, heat release properties, and high-value radioactive nuclides. Therefore, using chemical methods for reprocessing can enhance economic efficiency and reduce the potential environmental risks of nuclear energy. Due to the presence of relatively diffuse f-electrons, the chemical properties of trivalent lanthanides (Ln(III)) and actinides (An(III)) in SNF solutions are quite similar. Separation methods have several limitations, including poor separation efficiency and the need for multiple stripping agents. The use of novel multi-dental phenanthroline-derived extractants with nitrogen donor atoms to effectively separate An(III) over Ln(III) has been widely accepted. This review first introduces the development history of phenanthroline-derived extractants for extraction and complexation with An(III) over Ln(III). Then, based on structural differences, these extractants are classified into four categories: nitrogen-coordinated, N,O-hybrid coordinated, highly preorganized structure, and unsymmetric structure. Each category's design principles, extraction, and separation performance as well as their advantages and disadvantages are discussed. Finally, we have summarized and compared the unique characteristics of the existing extractants and provided an outlook. This work may offer a reliable reference for the precise identification and selective separation between An(III) and Ln(III), and point the way for future development and exploration.
Collapse
Affiliation(s)
- Xiaofan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dong Fang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Anyun Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
2
|
Zhang X, Ye L, Chen W, Zhang X, Chen W, Chen M, Huang P. Theoretical Study of Am(III) and Eu(III) Separation by a Bipyridyl Phosphate Ligand. ACS OMEGA 2024; 9:12060-12068. [PMID: 38496969 PMCID: PMC10938453 DOI: 10.1021/acsomega.3c09940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Actinide An(III) and lanthanide Ln(III) are known to exhibit similar chemical properties; thus, it is difficult to distinguish them in the separation of highly radioactive waste liquids. One potential method to efficiently separate actinides and lanthanides involves the design and development of phosphorus-oxygen-bonded ligands with solvent extraction separation. Here, a bipyridine phosphate ligand with two isopropyl and phosphate groups is introduced to selectively extract actinides. The electronic structure, bonding properties, thermodynamic behavior, and quantum theory of atoms in molecules (QTAIM) of Am(III) and Eu(III) complexes with the bipyridine phosphate ligands were analyzed by using density functional theory (DFT) calculations. The analysis demonstrates that the Am-N bond exhibits stronger covalent characteristics than the Eu-N bond, indicating that the bipyridine phosphate ligand had better selectivity for Am(III) than for Eu(III) in terms of binding affinity. The thermodynamic analysis established the complex [ML(NO3)2(H2O)2]+ as the most stable species during the complexation process. The results indicate great potential for utilizing the bipyridine phosphate ligand for the effective separation of An(III)/Ln(III) in spent fuel reprocessing experiments.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Lulu Ye
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Weihao Chen
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Xiaofei Zhang
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Weiwei Chen
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Miaogen Chen
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Pinwen Huang
- Zhejiang
University of Water Resources and Electric Power, Hangzhou 310018, China
| |
Collapse
|
3
|
Xiu T, Liu L, Liu S, Shehzad H, Liang Y, Zhang M, Ye G, Jiao C, Yuan L, Shi W. Complexation and extraction of trivalent actinides over lanthanides using highly soluble phenanthroline diamide ligands with different side chains. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133508. [PMID: 38228009 DOI: 10.1016/j.jhazmat.2024.133508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Although phenanthroline diamide ligands have been widely reported, their limited solubility in organic solvents and poor performance in the separation of trivalent actinides (An(III)) and lanthanides (Ln(III)) at high acidity are still clear demerits. In this study, we designed and synthesized three highly soluble phenanthroline diamide ligands with different side chains. By introducing alkyl chains and ester groups, the ligands solubility in 3-nitrotrifluorotoluene is increased to over 600 mmol/L, significantly higher than the previous reported phenanthroline diamide ligands. Based on anomalous aryl strengthening, benzene ring was incorporated to enhance ligand selectivity toward Am(III). Extraction experiments demonstrated favorable selectivity of all the three ligands towards Am(III). The optimal separation factor (SFAm/Eu) reaches 53 at 4 mol/L HNO3, representing one of the most effective separation of An(III) over Ln(III) under high acidity. Slope analysis, single crystal structure analysis, as well as titration of ultraviolet visible spectroscopy, mass spectrometry, and nuclear magnetic resonanc confirmed the formation of 1:1 and 1:2 complex species between the metal ions and the ligands depending on the molar ratio of metal ions in the reaction mixture. The findings of this study offer valuable insights for developing phenanthroline diamide ligands for An(III)/Ln(III) separation.
Collapse
Affiliation(s)
- Taoyuan Xiu
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China; Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; China Institute of Atomic Energy, Beijing 102413, China
| | - Likun Liu
- China Institute of Atomic Energy, Beijing 102413, China
| | - Siyan Liu
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Hamza Shehzad
- School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Yuanyuan Liang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Guoan Ye
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China; China Institute of Atomic Energy, Beijing 102413, China.
| | - Caishan Jiao
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China.
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Nagar A, Sengupta A, Sk MA, Mohapatra PK. Ionic Liquid Assisted Exothermic Complexation of Trivalent Lanthanides with Fluorinated β Diketone: Multitechnique Approach with Theoretical Insight. Inorg Chem 2023; 62:19631-19647. [PMID: 37970800 DOI: 10.1021/acs.inorgchem.3c03029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The complexation of the betadiketone,1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedione (HFOD) was studied with trivalent lanthanide ions, viz. Nd3+, La3+, and Eu3+ in several methylimidazolium-based ionic liquids (Cnmim•NTf2, where, n = 4,6,8). In C6mim•NTf2, predominant formation of ML2+ and ML4- species was evidenced from the UV-vis absorption (Nd3+) as well as luminescence (Eu3+) spectral studies with log β2 ≈ 5.88 ± 0.04, log β4 ≈ 10.95 ± 0.06. The formation constants followed the trend C4mim•NTf2 > C6mim•NTf2 > C8mim•NTf2. The asymmetry factors for the ML2+ and ML4- species were found to be 1.2 and 1.59, respectively. The ML4- complex was found to have one primary coordination sphere water molecule with enhanced covalency between Eu3+ and O from HFOD (Judd Offelt constants Ω2 and Ω4 ≈ 17.2 and 2.35) compared to Eu3+aq, yet comparable to other β diketones. Complexation-induced temperature increase was confirmed by calorimetric measurements, indicating the exothermic complexation reaction (ΔHcomplexation ≈ -13.7 kJ mol-1), which is also spontaneous in nature (ΔG ≈ -68.1 kJ mol-1), with an enhancement in the entropy values. Due to complexation, the shifts in the peak positions (1686.66 cm-1, 1633.53 cm-1) associated with β diketone/ketone functional groups were evidenced. Density functional theory (DFT) calculation was performed to optimize the structural parameters including bond distance, bond angles, and energetics associated with the complexation.
Collapse
Affiliation(s)
- Adityamani Nagar
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098, India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Musharaf Ali Sk
- Homi Bhabha National Institute, Mumbai 400094, India
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prasanta K Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
5
|
Konopkina EA, Pozdeev AS, Kalle P, Kirsanov DO, Smol'yanov NA, Kirsanova AA, Kalmykov SN, Petrov VG, Borisova NE, Matveev PI. Sensing and extraction of hazardous metals by di-phosphonates of heterocycles: a combined experimental and theoretical study. Dalton Trans 2023; 52:12934-12947. [PMID: 37646311 DOI: 10.1039/d3dt01534c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this study, pyridine and phenanthroline diphosphonate ligands were investigated for the first time from the context of solvent extraction and potentiometric sensing of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) cations. The extraction efficiency under the same conditions for phenanthroline-diphosphonates is considerably higher than that for pyridine ligands. At the same time, the pyridine-diphosphonates show pronounced selectivity towards lead in this metal series. The extraction systems with phenanthroline diphosphonates provided the most efficient extraction of Cd(II) and Pb(II) cations (D > 90). The newly developed pyridine and phenanthroline diphosphonate ligands have proven to be highly effective components in plasticized polymeric membranes. These ligands can be utilized to construct potentiometric ion sensors that exhibit a notable response specifically towards Pb(II) cations. Among the previously reported tetradentate ligands, the phenanthroline diphosphonate ligand, when incorporated into plasticized polymeric membranes, demonstrated the highest sensitivity towards d-metals and Pb(II). The structure of the single crystal complex of Pb(II) and Cd(II) with pyridine-diphosphonates was studied by X-ray diffraction analysis (XRD). The geometry of Cu(II), Zn(II), Cd(II) and Pb(II) complexes and the energy effect of the complex formation, including pseudo-oligomerization reactions, were determined by DFT calculations. The high sensing and extraction efficiency of diphosphonates with respect to Pb(II) is consistent with the minimum values of complex formation energies. The variation in sensory and extraction properties observed among the studied diphosphonate ligands is influenced by the ability to form polynuclear complexes with Pb(II) cations, whereas such properties are absent in the case of Cd(II) cations.
Collapse
Affiliation(s)
- Ekaterina A Konopkina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Anton S Pozdeev
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322-0300, USA
| | - Paulina Kalle
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry O Kirsanov
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
- ITMO University, Saint-Petersburg, Russian Federation
| | | | - Anna A Kirsanova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
6
|
Wang Q, Liu Z, Song YF, Wang D. Recent Advances in the Study of Trivalent Lanthanides and Actinides by Phosphinic and Thiophosphinic Ligands in Condensed Phases. Molecules 2023; 28:6425. [PMID: 37687254 PMCID: PMC10489984 DOI: 10.3390/molecules28176425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The separation of trivalent actinides and lanthanides is a key step in the sustainable development of nuclear energy, and it is currently mainly realized via liquid-liquid extraction techniques. The underlying mechanism is complicated and remains ambiguous, which hinders the further development of extraction. Herein, to better understand the mechanism of the extraction, the contributing factors for the extraction are discussed (specifically, the sulfur-donating ligand, Cyanex301) by combing molecular dynamics simulations and experiments. This work is expected to contribute to improve our systematic understanding on a molecular scale of the extraction of lanthanides and actinides, and to assist in the extensive studies on the design and optimization of novel ligands with improved performance.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Cai Y, Ansari SA, Yuan L, Feng W, Mohapatra PK. Unassisted and Efficient Actinide/Lanthanide Separation with Pillar[5]arene-Based Picolinamide Ligands in Ionic Liquids. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Yimin Cai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Seraj A. Ansari
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | | |
Collapse
|
8
|
Wang X, Song L, Yu Q, Li Q, He L, Xiao X, Pan Q, Yang Y, Ding S. Complexation of a Nitrilotriacetate-Derived Triamide Ligand with Trivalent Lanthanides: A Thermodynamic and Crystallographic Study. Inorg Chem 2023; 62:3916-3928. [PMID: 36821293 DOI: 10.1021/acs.inorgchem.2c04311] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Non-heterocyclic N-donor nitrilotriacetate-derived triamide ligands are one of the most promising extractants for the selective extraction separation of trivalent actinides over lanthanides, but the thermodynamics and mechanism of the complexation of this kind of ligand with actinides and lanthanides are still not clear. In this work, the complexation behaviors of N,N,N',N',N″,N″-hexaethylnitrilotriacetamide (NTAamide(Et)) with four representative trivalent lanthanides (La3+, Nd3+, Eu3+, and Lu3+) were systematically investigated by using 1H nuclear magnetic resonance (1H NMR), ultraviolet-visible (UV-vis) and fluorescence spectrophotometry, microcalorimetry, and single-crystal X-ray diffractometry. 1H NMR spectroscopic titration of La3+ and Lu3+ indicates that two species of 1:2 and 1:1 metal-ligand complexes were formed in NO3- and ClO4- media. The stability constants of NTAamide(Et) with Nd3+ and Eu3+ obtained by UV-vis and fluorescence titration show that the complexing strength of NTAamide(Et) with Nd3+ is lower than that with Eu3+ in the same anionic medium, while that of the same lanthanide complex is higher in ClO4- medium than in NO3- medium. Meanwhile, the formation reactions for all metal-ligand complexes are driven by both enthalpy and entropy. The structures of lanthanide complexes in the single ClO4- and NO3- medium and the mixed one were determined to be [LnL2(MeOH)](ClO4)3 (Ln = La, Nd, Eu, and Lu), [LaL2(EtOH)2][La(NO3)6], and [LaL2(NO3)](ClO4)2, separately. The average bond lengths of lanthanide complexes decrease gradually with the decrease in ionic radii of Ln3+, indicating that heavier lanthanides form stronger complexes due to the lanthanide contraction effect, which coincides with the trend of the complexing strength obtained by spectroscopic titration. This work not only reveals the thermodynamics and mechanism of the complexation between NTAamide ligands and lanthanides but also obtains the periodic tendency of complexation between them, which may facilitate the separation of trivalent lanthanides from actinides.
Collapse
Affiliation(s)
- Xueyu Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lianjun Song
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qiao Yu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qiuju Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lanlan He
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qingjiang Pan
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yanqiu Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, P. R. China
| | - Songdong Ding
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
9
|
Gutorova SV, Matveev PI, Trigub AL, Lemport PS, Kalmykov SN. Evidence for the Perchlorate Anion Coordination in the Structure of Uranyl Cation Complex with N,O-Donor Ligands in a Solution: RMC-EXAFS Study. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522070203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Miao Y, Xu L, Yang X, Wang S, Zhang J, Xu C, Xiao C. Separation and Complexation of Trivalent Actinides and Lanthanides by Two Novel Asymmetric N,O-Hybrid Pyridyl Ligands: A Combination of Phosphoryl and Triazinyl Groups. Inorg Chem 2022; 61:17911-17923. [DOI: 10.1021/acs.inorgchem.2c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujie Miao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Konopkina EA, Matveev PI, Huang PW, Kirsanova AA, Chernysheva MG, Sumyanova TB, Domnikov KS, Shi WQ, Kalmykov SN, Petrov VG, Borisova NE. Pyridine-di-phosphonates as chelators for trivalent f-elements: kinetics, thermodynamic and interfacial study of Am(III)/Eu(III) solvent extraction. Dalton Trans 2022; 51:11180-11192. [PMID: 35801576 DOI: 10.1039/d2dt01007k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fractionation of high-level radioactive waste from nuclear power plants simplifies the handling of its components, and facilitates the reduction of radiotoxic effects on the environment. The search and study of new ligands for solvent extraction, as one of the methods in fractionation, remains a complex and important research task. In this work, four pyridine diphosphonate ligands were synthesized. These ligands are part of the class of the N,O-donor extractants, which are selective towards Am(III). The separation factor SF(Am/Eu) for the best extractant reached values up to 10. The influence of the substituents on the efficiency of extraction and complexation of trivalent f-elements, the kinetics of extraction, and the behavior of the ligand at the interface were described. The effect of nitric acid concentration on the extraction was shown. The stoichiometry of the complexes was determined by slope analysis in solvent extraction experiment and verified by spectrophotometric titration in acetonitrile. Liquid tension experiments with a pendant drop method revealed the interfacial properties of the ligands in "F-3 solvent/H2O" and "F-3 solvent/HNO3" systems. The relationship between the surface activity and the ligand structure was shown. Studies of the extraction kinetics were performed in a modified Lewis cell. The effect of the ligand structure on the extraction rate was shown. The DFT calculation with the B3LYP density functional was used to explain the extraction properties of the ligands, including selectivity. The calculation of the pre-organization energy of the ligands explained the kinetics and extraction patterns for the studied series.
Collapse
Affiliation(s)
- Ekaterina A Konopkina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Pin-Wen Huang
- Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Anna A Kirsanova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Maria G Chernysheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Tsagana B Sumyanova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Kirill S Domnikov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| |
Collapse
|
12
|
Novel phenanthroline-derived pyrrolidone ligands for efficient uranium separation: Liquid-liquid extraction, spectroscopy, and molecular simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Liu T, Johnson KR, Jansone-Popova S, Jiang DE. Advancing Rare-Earth Separation by Machine Learning. JACS AU 2022; 2:1428-1434. [PMID: 35783179 PMCID: PMC9241157 DOI: 10.1021/jacsau.2c00122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 05/24/2023]
Abstract
Constituting the bulk of rare-earth elements, lanthanides need to be separated to fully realize their potential as critical materials in many important technologies. The discovery of new ligands for improving rare-earth separations by solvent extraction, the most practical rare-earth separation process, is still largely based on trial and error, a low-throughput and inefficient approach. A predictive model that allows high-throughput screening of ligands is needed to identify suitable ligands to achieve enhanced separation performance. Here, we show that deep neural networks, trained on the available experimental data, can be used to predict accurate distribution coefficients for solvent extraction of lanthanide ions, thereby opening the door to high-throughput screening of ligands for rare-earth separations. One innovative approach that we employed is a combined representation of ligands with both molecular physicochemical descriptors and atomic extended-connectivity fingerprints, which greatly boosts the accuracy of the trained model. More importantly, we synthesized four new ligands and found that the predicted distribution coefficients from our trained machine-learning model match well with the measured values. Therefore, our machine-learning approach paves the way for accelerating the discovery of new ligands for rare-earth separations.
Collapse
Affiliation(s)
- Tongyu Liu
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Katherine R. Johnson
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santa Jansone-Popova
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - De-en Jiang
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
14
|
Ebenezer C, Solomon RV. Uptake of Am(III) Ions and Eu(III) Ions Using Cyclic Substituted N, O‐hybrid 1,10‐Phenanthroline Derived Phosphine Oxide Ligands ‐ A DFT Exploration. ChemistrySelect 2022. [DOI: 10.1002/slct.202200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheriyan Ebenezer
- Department of Chemistry Madras Christian College (Autonomous) University of Madras, East Tambaram Chennai 600 059 Tamil Nadu India
| | - Rajadurai Vijay Solomon
- Department of Chemistry Madras Christian College (Autonomous) University of Madras, East Tambaram Chennai 600 059 Tamil Nadu India
| |
Collapse
|
15
|
Wilfong WC, Ji T, Duan Y, Shi F, Wang Q, Gray ML. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127625. [PMID: 34857400 DOI: 10.1016/j.jhazmat.2021.127625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous and growing global reliance on rare earth elements (REEs) for modern technology and the need for reliable domestic sources underscore the rising trend in REE-related research. Adsorption-based methods for REE recovery from liquid waste sources are well-positioned to compete with those of solvent extraction, both because of their expected lower negative environmental impact and simpler process operations. Functionalized silica represents a rising category of low cost and stable sorbents for heavy metal and REE recovery. These materials have collectively achieved high capacity and/or high selective removal of REEs from ideal solutions and synthetic or real coal wastewater and other leachate sources. These sorbents are competitive with conventional materials, such as ion exchange resins, activated carbon; and novel polymeric materials like ion-imprinted particles and metal organic frameworks (MOFs). This critical review first presents a data mining analysis for rare earth element recovery publications indexed in Web of science, highlighting changes in REE recovery research foci and confirming the sharply growing interest in functionalized silica sorbents. A detailed examination of sorbent formulation and operation strategies to selectively separate heavy (HREE), middle (MREE), and light (LREE) REEs from the aqueous sources is presented. Selectivity values for sorbents were largely calculated from available figure data and gauged the success of the associated strategies, primarily: (1) silane-grafted ligands, (2) impregnated ligands, and (3) bottom-up ligand/silica hybrids. These were often accompanied by successful co-strategies, especially bite angle control, site saturation, and selective REE elution. Recognizing the need to remove competing fouling metals to achieve purified REE "baskets," we highlight techniques for eliminating these species from acid mine drainage (AMD) and suggest a novel adsorption-based process for purified REE extraction that could be adapted to different water systems.
Collapse
Affiliation(s)
- Walter C Wilfong
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA.
| | - Tuo Ji
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - Yuhua Duan
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - Fan Shi
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - Qiuming Wang
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - McMahan L Gray
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| |
Collapse
|
16
|
Sun M, Xu L, Yang X, Wang S, Lei L, Xiao C. Complexation Behaviors of a Tridentate Phenanthroline Carboxamide Ligand with Trivalent f-Block Elements in Different Anion Systems: A Thermodynamic and Crystallographic Perspective. Inorg Chem 2022; 61:2824-2834. [PMID: 35104133 DOI: 10.1021/acs.inorgchem.1c03270] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The counteranion has a strong influence on the complexation behavior of tridentate phenanthroline carboxamide ligands with actinides and lanthanides, but the thermodynamic and underlying interaction mechanism at the molecular level is still not clear. In this work, a tridentate ligand, N-ethyl-N-tolyl-2-amide-1,10-phenanthroline (Et-Tol-PTA), was synthesized, and the effects of different anions (Cl-, NO3-, and ClO4-) on the complexation behavior of Et-Tol-PTA with typical lanthanides were thoroughly studied by using 1H nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) spectrophotometry, and single-crystal X-ray diffraction. The NMR spectroscopic titration of Lu(III) showed that there were three species (1:1, 2:1, and 3:1 ligand-metal complexes) formed in Cl- solution systems while two species (2:1 and 1:1) were formed in NO3- and ClO4- solution systems. When Et-Tol-PTA was titrated with La(III), two species (2:1 and 1:1) were formed in NO3- systems and only one species (1:1) was formed in Cl- and ClO4- systems. In addition, the stability constant was determined via UV-vis spectroscopic titration, which showed that the complexation strength between Et-Tol-PTA and Eu(III) decreased in the following order: ClO4- > NO3- > Cl-. This indicated that Et-Tol-PTA had the strongest complexation ability with Eu(III) in the ClO4- system. The structures of Et-Tol-PTA complexed with EuCl3, Eu(NO3)3, and Eu(ClO4)3 were further elucidated by single-crystal X-ray diffraction and agreed well with the results of UV-vis titration experiments. The results of this work revealed that the mechanisms of complexation of lanthanides with the asymmetric ligand Et-Tol-PTA were strongly affected by different anionic environments in solution and in the solid state. These findings may lead to the improvement of the separation of trivalent actinides and lanthanides in nuclear waste.
Collapse
Affiliation(s)
- Mingze Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Ebenezer C, Vijay Solomon R. Preorganization of N, O-hybrid phosphine oxide chelators for effective extraction of trivalent Am/Eu ions - A computational study. NEW J CHEM 2022. [DOI: 10.1039/d1nj06029e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N, O-hybrid phosphine oxide ligands with N-heterocyclic cores are the advanced extractants for extracting actinides over lanthanides. Yet, the challenging task in designing an efficient hybrid ligand is tracing the...
Collapse
|
18
|
Yang X, Wang S, Xu L, Yan Q, Xu C, Matveev P, Lei L, Xiao C. New tetradentate N, O-hybrid phenanthroline-derived organophosphorus extractants for the separation and complexation of trivalent actinides and lanthanides. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01153k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparison of the extraction and separation properties between two novel phenanthroline-derived organophosphorus ligands, Et-Ph-BPPhen and Et-Ph-PIPhen.
Collapse
Affiliation(s)
- Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou 310058, China
| | - Qiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Petr Matveev
- Radiochemistry Division, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
Matveev PI, Huang PW, Kirsanova AA, Ananyev IV, Sumyanova TB, Kharcheva AV, Khvorostinin EY, Petrov VG, Shi WQ, Kalmykov SN, Borisova NE. Way to Enforce Selectivity via Steric Hindrance: Improvement of Am(III)/Eu(III) Solvent Extraction by Loaded Diphosphonic Acid Esters. Inorg Chem 2021; 60:14563-14581. [PMID: 34546034 DOI: 10.1021/acs.inorgchem.1c01432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid donor extractants are a promising class of compounds for the separation of trivalent actinides and lanthanides. Here, we investigated a series of sterically loaded diphosphonate ligands based on bipyridine (BiPy-PO-iPr and BiPy-PO-cHex) and phenanthroline (Phen-PO-iPr and Phen-PO-cHex). We studied their complex formation with nitrates of trivalent f-elements in solvent extraction systems (Am and Eu) and homogeneous acetonitrile solutions (Nd, Eu, and Lu). Phenanthroline extractants demonstrated the highest efficiency and selectivity [SF(Am/Eu) up to 14] toward Am(III) extraction from nitric acid solutions among all of the studied diphosphonates of N-heterocycles. The binding constants established by UV-vis titration also indicated stronger binding of sterically impaired diphosphonates compared to the primary substituted diphosphonates. NMR titration and slope analysis during solvent extraction showed the formation of 2:1 complexes at high concentrations (>10-3 mol/L) for phenanthroline-based ligands. According to UV-vis titrations at low concentrations (10-5-10-6 mol/L), the phenanthroline-based ligands formed 1:1 complexes. Bipyridine-based ligands formed 1:1 complexes regardless of the ligand concentration. Luminescence titrations revealed that the quantum yields of the complexes with Eu(III) were 81 ± 8% (BiPy-PO-iPr) and 93 ± 9% (Phen-PO-iPr). Single crystals of the structures [Lu(μ2,κ4-(iPrO)2P(O)Phen(O)2(OiPr))(NO3)2]2 and Eu(Phen-PO-iPr)(NO3)3 were obtained by chemical synthesis with the Phen-PO-iPr ligand. X-ray diffraction studies revealed a closer contact of the f-element with the aromatic N atoms in the case of sterically loaded P═O ligands compared with sterically deficient ligands. Density functional theory calculations allowed us to rationalize the observed selectivity trends in terms of the bond length, Mayer bond order, and preorganization energy.
Collapse
Affiliation(s)
- Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Pin-Wen Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Anna A Kirsanova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Ivan V Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Avilova St. 28, Moscow 119991, Russian Federation
| | - Tsagana B Sumyanova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Anastasia V Kharcheva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation.,Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, Moscow 119991, Russian Federation
| | - Evgenii Yu Khvorostinin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Wei-Qun Shi
- Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Avilova St. 28, Moscow 119991, Russian Federation
| |
Collapse
|
20
|
George Thomas M, Ebenezer C, Solomon RV. Tuning the structure of disulfonated phenanthroline based ligands for effective separation of Am(III)/Eu(III) ions : A DFT investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
De Jesus K, Rodriguez R, Baek D, Fox R, Pashikanti S, Sharma K. Extraction of lanthanides and actinides present in spent nuclear fuel and in electronic waste. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Xu L, Hao Y, Yang X, Wang Z, Xu C, Borisova NE, Sun M, Zhang X, Lei L, Xiao C. Comparative Investigation into the Complexation and Extraction Properties of Tridentate and Tetradentate Phosphine Oxide-Functionalized 1,10-Phenanthroline Ligands toward Lanthanides and Actinides. Chemistry 2021; 27:10717-10730. [PMID: 34002918 DOI: 10.1002/chem.202101224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/06/2022]
Abstract
Two new phosphine oxide-functionalized 1,10-phenanthroline ligands, tetradentate 2,9-bis(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-BPPhen, L1 ) and tridentate 2-(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-MPPhen, L2 ), were synthesized and studied comparatively for their coordination with trivalent actinides and lanthanides. The complexation mechanisms of these two ligands toward trivalent f-block elements were thoroughly elucidated by NMR spectroscopy, UV/vis spectrophotometry, fluorescence spectrometry, single-crystal X-ray diffraction, solvent extraction, and theoretical calculation methods. NMR titration results demonstrated that 1 : 1 and 1 : 2 (metal to ligand) lanthanides complexes formed for L1 , whereas 1 : 1, 1 : 2 and 1 : 3 lanthanide complexes formed for L2 in methanol. The formation of these species was validated by fluorescence spectrometry, and the corresponding stability constants for the complexes of NdIII with L1 and L2 were determined by using UV/vis spectrophotometry. Structures of the 10-coordinated 1 : 1-type complexes of EuL1 (NO3 )3 and [EuL2 (NO3 )3 (H2 O)] Et2 O in the solid state were characterized by X-ray crystallography. In solvent-extraction experiments, L1 exhibited extremely strong extraction ability for both AmIII and EuIII , whereas L2 showed nearly no extraction toward AmIII or EuIII due to its high hydrophilicity. Finally, the structures and bonding natures of the complex species formed between AmIII /EuIII and L1 /L2 were analyzed in DFT calculations.
Collapse
Affiliation(s)
- Lei Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuxun Hao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, GSP-1, 119991, Moscow, Russian Federation
| | - Mingze Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
23
|
Niu K, Yang F, Gaudin T, Ma H, Fang W. Theoretical Study of Effects of Solvents, Ligands, and Anions on Separation of Trivalent Lanthanides and Actinides. Inorg Chem 2021; 60:9552-9562. [PMID: 34161729 DOI: 10.1021/acs.inorgchem.1c00657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to its associated low CO2 emissions, nuclear energy production is rapidly growing. In this context, the treatment of high-level liquid waste (HLLW) of nuclear plants is of high concern to both scientific and industrial communities. Specifically, the separation of An(III) and Ln(III) cations when processing nuclear fuel is a vitally important, yet challenging, step within HLLW because An(III) and Ln(III) have similar chemical properties in solution. To guide the choice of relevant ligands, anions, and solvents for this separation step, in this work, we calculate and compare the free energy of formation of different Am(III) and Eu(III) complexes (which are typical and important An(III) and Ln(III) cation examples), involving two different ligands and three different counter ions in four different solvents. Based on our calculations, we predict that the chosen solvent is a key factor in the extraction of Am(III) and Eu(III) in treatment of HLLW. This study supports a systematic, computation-assisted screening of solvents and extractive ligands with counter anions as a proficient method to optimize the separation of Ln(III) and An(III).
Collapse
Affiliation(s)
- Ke Niu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Théophile Gaudin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Weihai Fang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Yang XF, Ren P, Yang Q, Geng JS, Zhang JY, Yuan LY, Tang HB, Chai ZF, Shi WQ. Strong Periodic Tendency of Trivalent Lanthanides Coordinated with a Phenanthroline-Based Ligand: Cascade Countercurrent Extraction, Spectroscopy, and Crystallography. Inorg Chem 2021; 60:9745-9756. [PMID: 34115461 DOI: 10.1021/acs.inorgchem.1c01035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenanthroline-diamide ligands have been reported in the selective separation of actinides over Eu(III); on the contrary, relevant basic coordination chemistry studies are still limited, and extraction under actual application conditions is rarely involved. In this work, N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline [Et-Tol-DAPhen (L)] was applied to explore the coordination performance of lanthanides in simulative high-level liquid waste. For the first time, cascade countercurrent extraction was conducted with Et-Tol-DAPhen as the extractant, which reveals the periodic tendency of the extraction efficiency of lanthanides to decrease gradually as the atomic number increases. Comparison of elements with similar radii verifies the hypothesis that the increase in the atomic number leads to a decrease in the ionic radius, thus reducing the coordination and extraction capacity of ligands. Slope analysis, electrospray ionization mass spectrometry, and ultraviolet-visible titration results show that the ligand forms 1:1 and 1:2 complexes with lanthanides and the coordination ability follows the tendency of extraction efficiency, and the first crystal structures of Lns(III) with a phenanthroline-diamide ligand, i.e., [LaL(NO3)3(H2O)] and [LaL2(NO3)2][(NO3)], were obtained, which confirms the conclusions described above. This work promises to enhance our comprehension of the chemical properties of Lns(III) and offer new clues for the design and synthesis of novel separation ligands.
Collapse
Affiliation(s)
- Xiao-Fan Yang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Peng Ren
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Qi Yang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Yu Zhang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Bin Tang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineer Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Meng R, Xu L, Yang X, Sun M, Xu C, Borisova NE, Zhang X, Lei L, Xiao C. Influence of a N-Heterocyclic Core on the Binding Capability of N,O-Hybrid Diamide Ligands toward Trivalent Lanthanides and Actinides. Inorg Chem 2021; 60:8754-8764. [PMID: 34077191 DOI: 10.1021/acs.inorgchem.1c00715] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N,O-hybrid diamide ligands with N-heterocyclic skeletons are one of the promising extractants for the selective separation of actinides over lanthanides in a highly acidic HNO3 solution. In this work, three hard-soft donor mixed diamide ligands, pyridine-2,6-diylbis(pyrrolidin-1-ylmethanone) (Pyr-PyDA), 2,2'-bipyridine-6,6'-diylbis(pyr-rolidine-1-ylmethanone) (Pyr-BPyDA), and (1,10-phenanthroline-2,9-diyl)bis(pyrrolidin-1-ylmethanone) (Pyr-DAPhen), were synthesized and used to probe the influence of N-heterocyclic cores on the complexation and extraction behaviors with trivalent lanthanides and actinides. 1H NMR titration experiments demonstrated that 1:1 metal-to-ligand complexes were mainly formed between the three ligands and lanthanides, but 1:2 type complexes were also formed between tridentate Pyr-PyDA and Lu(III). The stability constants (log β) of these three ligands with two typical lanthanides, Nd(III) and Eu(III), were determined through spectrophotometric titration. It is found that Pyr-DAPhen formed the most stable complexes, while Pyr-PyDA formed the most unstable complexes with lanthanides, which coincided well with the following solvent extraction results. The solid-state structures of 1:1 type complexes of these three ligands with La(III), Nd(III), and Er(III) in nitrate media were identified by a single-crystal X-ray diffraction technique. Nd(III) and Er(III) were 10-coordinated with Pyr-PyDA, Pyr-BPyDA, and Pyr-DAPhen via one ligand molecule and three nitrate ions. La(III), because of its larger ionic radius, was 11-coordinated with Pyr-DAPhen through one ligand molecule, three nitrate ions, and one methanol molecule. Solvent extraction experiments showed that the preorganized phenanthroline-derived Pyr-DAPhen had the best extraction performance for trivalent actinide among the three ligands tested. This work provides some experimental insights into the design of more efficient ligands for trivalent actinide separation by adjusting the N-heterocyclic cores.
Collapse
Affiliation(s)
- Ruixue Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Lei Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingze Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
26
|
Lipin R, Ebenezer C, Solomon RV. Theoretical evaluation of mixed N-, O- donor based TMPhenDA ligand in selective complexation with actinide (III) ions over lanthanide (III) ions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Xu L, Yang X, Wang Z, Wang S, Sun M, Xu C, Zhang X, Lei L, Xiao C. Unfolding the Extraction and Complexation Behaviors of Trivalent f-Block Elements by a Tetradentate N,O-Hybrid Phenanthroline Derived Phosphine Oxide Ligand. Inorg Chem 2021; 60:2805-2815. [PMID: 33502197 DOI: 10.1021/acs.inorgchem.0c03727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, a tetradentate N,O-hybrid 2,9-bis(diphenylphosphine oxide)-1,10-phenanthroline (Ph2-BPPhen) ligand was studied for the coextraction of trivalent f-block elements from nitric acid media. The extraction as well as the complexation behaviors of Ph2-BPPhen with f-block elements were thoroughly investigated using 31P and 1H NMR spectrometry, UV-vis spectrophotometry, single crystal X-ray diffraction, and density functional theoretical (DFT) calculation. Ph2-BPPhen exhibits remarkably extraction ability for both Am(III) and Eu(III) and more than 99.5% of Am(III) and Eu(III) were extracted from 1.0 M HNO3 solution. Slope analysis suggests that both 2:1 and 1:1 ligand/metal complexes were probably formed during the extraction. The 1:1 and 2:1 Ln(III) complexes with Ph2-BPPhen were also identified in CH3OH solution by NMR spectrometry, and the stability constants were determined via UV-vis spectrophotometry. Structures of the 1:1 Eu(Ph2-BPPhen)(NO3)3 and Am(Ph2-BPPhen)(NO3)3 complexes were further elucidated by single X-ray crystallography and DFT calculations. The higher extractability of Ph2-BPPhen toward trivalent Am(III) and Eu(III) compared with the previously reported phenanthroline-derived amide and phosphonate ligands was attributed to the stronger affinity of the -P═O(R)2 group to metal ions. The results from this work indicate that the N,O-hybrid 1,10-phenanthroline derived phosphine oxide ligand can serve as a new and promising candidate for coextraction of trivalent f-block elements in the treatment of nuclear waste.
Collapse
Affiliation(s)
- Lei Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Mingze Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|