1
|
Murphy GL, Bazarkina E, Svitlyk V, Rossberg A, Potts S, Hennig C, Henkes M, Kvashnina KO, Huittinen N. Probing the Long- and Short-Range Structural Chemistry in the C-Type Bixbyite Oxides Th 0.40Nd 0.48Ce 0.12O 1.76, Th 0.47Nd 0.43Ce 0.10O 1.785, and Th 0.45Nd 0.37Ce 0.18O 1.815 via Synchrotron X-ray Diffraction and Absorption Spectroscopy. ACS OMEGA 2024; 9:27397-27406. [PMID: 38947849 PMCID: PMC11209933 DOI: 10.1021/acsomega.4c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
The long- and short-range structural chemistry of the C-type bixbyite compounds Th0.40Nd0.48Ce0.12O1.76, Th0.47Nd0.43Ce0.10O1.785, and Th0.45Nd0.37Ce0.18O1.815 is systematically examined using synchrotron X-ray powder diffraction (S-PXRD), high-energy resolution fluorescence detection X-ray absorption near edge (HERFD-XANES), and extended X-ray absorption fine structure spectroscopy (EXAFS) measurements supported by electronic structure calculations. S-PXRD measurements revealed that the title compounds all form classical C-type bixbyite structures in space group Ia3̅ that have disordered cationic crystallographic sites with further observation of characteristic superlattice reflections corresponding to oxygen vacancies. Despite the occurrence of oxygen vacancies, HERFD-XANES measurements on the Ce L3-edge revealed that Ce incorporates as Ce4+ into the structures but involves local distortion that resembles cluster behavior and loss of nearest-neighbors. In comparison, HERFD-XANES measurements on the Nd L3-edge supported by electronic structure calculations reveal that Nd3+ adopts a local coordination environment similar to the long-range C-type structure while providing charge balancing for the formation of oxygen defects. Th L3-edge EXAFS analysis reveals shorter average Th-O distances in the title compounds in comparison to pristine ThO2 in addition to shorter Th-O and Th-Ce distances compared to Th-Th or Ce-Ce in the corresponding F-type binary oxides (ThO2 and CeO2). These distances are further found to decrease with the increased Nd content of the structures despite simultaneous observation of the overall lattice structure progressively expanding. Linear combination calculations of the M-O bond lengths are used to help explain these observations, where the role of oxygen defects, via Nd3+ incorporation, induces local bond contraction and enhanced Th cation valence, leading to the observed increased lattice expansion with progressive Nd3+ incorporation. Overall, the investigation points to the significance of dissimilar cations exhibiting variable short-range chemical behavior and how it can affect the long-range structural chemistry of complex oxides.
Collapse
Affiliation(s)
- Gabriel L. Murphy
- Institute
of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Elena Bazarkina
- Institute
of Resource Ecology, Helmholtz Zentrum Dresden
Rossendorf, Dresden 01328, Germany
- The
Rossendorf Beamline at ESRF, The European
Synchrotron, CS40220, Grenoble Cedex 9 38043, France
| | | | - André Rossberg
- Institute
of Resource Ecology, Helmholtz Zentrum Dresden
Rossendorf, Dresden 01328, Germany
- The
Rossendorf Beamline at ESRF, The European
Synchrotron, CS40220, Grenoble Cedex 9 38043, France
| | - Shannon Potts
- Institute
of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Christoph Hennig
- Institute
of Resource Ecology, Helmholtz Zentrum Dresden
Rossendorf, Dresden 01328, Germany
- The
Rossendorf Beamline at ESRF, The European
Synchrotron, CS40220, Grenoble Cedex 9 38043, France
| | - Maximilian Henkes
- Institute
of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Kristina O. Kvashnina
- Institute
of Resource Ecology, Helmholtz Zentrum Dresden
Rossendorf, Dresden 01328, Germany
- The
Rossendorf Beamline at ESRF, The European
Synchrotron, CS40220, Grenoble Cedex 9 38043, France
| | - Nina Huittinen
- Institute
of Resource Ecology, Helmholtz Zentrum Dresden
Rossendorf, Dresden 01328, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| |
Collapse
|
2
|
He ZD, Tesch R, Eslamibidgoli MJ, Eikerling MH, Kowalski PM. Low-spin state of Fe in Fe-doped NiOOH electrocatalysts. Nat Commun 2023; 14:3498. [PMID: 37311755 DOI: 10.1038/s41467-023-38978-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
Doping with Fe boosts the electrocatalytic performance of NiOOH for the oxygen evolution reaction (OER). To understand this effect, we have employed state-of-the-art electronic structure calculations and thermodynamic modeling. Our study reveals that at low concentrations Fe exists in a low-spin state. Only this spin state explains the large solubility limit of Fe and similarity of Fe-O and Ni-O bond lengths measured in the Fe-doped NiOOH phase. The low-spin state renders the surface Fe sites highly active for the OER. The low-to-high spin transition at the Fe concentration of ~ 25% is consistent with the experimentally determined solubility limit of Fe in NiOOH. The thermodynamic overpotentials computed for doped and pure materials, η = 0.42 V and 0.77 V, agree well with the measured values. Our results indicate a key role of the low-spin state of Fe for the OER activity of Fe-doped NiOOH electrocatalysts.
Collapse
Affiliation(s)
- Zheng-Da He
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| | - Rebekka Tesch
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Mohammad J Eslamibidgoli
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| | - Michael H Eikerling
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Piotr M Kowalski
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany.
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany.
| |
Collapse
|
3
|
Refined DFT+ U method for computation of layered oxide cathode materials. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Hao Y, Murphy GL, Kegler P, Li Y, Kowalski PM, Blouin S, Zhang Y, Wang S, Robben L, Gesing TM, Alekseev EV. Understanding the role of flux, pressure and temperature on polymorphism in ThB 2O 5. Dalton Trans 2022; 51:13376-13385. [PMID: 35984644 DOI: 10.1039/d2dt01049f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel polymorph of ThB2O5, denoted as β-ThB2O5, was synthesised under high-temperature high-pressure (HT/HP) conditions. Via single crystal X-ray diffraction measurements, β-ThB2O5 was found to form a three-dimensional (3D) framework structure where thorium atoms are ten-fold oxygen coordinated forming tetra-capped trigonal prisms. The only other known polymorph of ThB2O5, denoted α, synthesised herein using a known borax, B2O3-Na2B4O7, high temperature solid method, was found to transform to the β polymorph when exposed to conditions of 4 GPa and ∼900 °C. Compared to the α polymorph, β-ThB2O5 has smaller molar volume by approximately 12%. Exposing a mixture of the α and β polymorphs to HT/HP conditions ex situ further demonstrated the preferred higher-pressure phase being β, with no α phase material being observed via Rietveld refinements against laboratory X-ray powder diffraction (PXRD) measurements. In situ heating PXRD measurements on α-ThB2O5 from RT to 1030 °C indicated that α-ThB2O5 transforms to the β variant at approximately 900 °C via a 1st order mechanism. β-ThB2O5 was found to exist only over a narrow temperature range, decomposing above 1050 °C. Ab initio calculations using density functional theory (DFT) with the Hubbard U parameter indicated, consistent with experimental observations, that β is both the preferred phase at higher temperatures and high pressures. Interestingly, it was found by switching from B2O3-Na2B4O7 to H3BO3-Li2CO3 flux using consistent high temperature solid state conditions for the synthesis of the α variant, β-ThB2O5 could be generated. Comparison of their single crystal measurements showed this was identical to that obtained from HT/HP conditions.
Collapse
Affiliation(s)
- Yucheng Hao
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230000, China.
| | - Gabriel L Murphy
- Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Philip Kegler
- Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Yan Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, PR China
| | - Piotr M Kowalski
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,JARA Energy & Center for Simulation and Data Science (CSD), Jülich, Germany
| | - Simon Blouin
- Department de Physique, University of Montreal, Montreal, QC H3C 3J7, Canada.,Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Yang Zhang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230000, China.
| | - Shuao Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lars Robben
- University of Bremen, Institute of Inorganic Chemistry and Crystallography, D-28359 Bremen, Germany.,University of Bremen, MAPEX Center for Materials and Processes, D-28359 Bremen, Germany
| | - Thorsten M Gesing
- University of Bremen, Institute of Inorganic Chemistry and Crystallography, D-28359 Bremen, Germany.,University of Bremen, MAPEX Center for Materials and Processes, D-28359 Bremen, Germany
| | - Evgeny V Alekseev
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| |
Collapse
|
5
|
Murphy GL, Kegler P, Alekseev EV. Advances and perspectives of actinide chemistry from ex situ high pressure and high temperature chemical studies. Dalton Trans 2022; 51:7401-7415. [PMID: 35475437 DOI: 10.1039/d2dt00697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High pressure high temperature (HP/HT) studies of actinide compounds allow the chemistry and bonding of among the most exotic elements in the periodic table to be examined under the conditions often only found in the severest environments of nature. Peering into this realm of physical extremity, chemists have extracted detailed knowledge of the fundamental chemistry of actinide elements and how they contribute to bonding, structure formation and intricate properties in compounds under such conditions. The last decade has resulted in some of the most significant contributions to actinide chemical science and this holds true for ex situ chemical studies of actinides resulting from HP/HT conditions of over 1 GPa and elevated temperature. Often conducted in tandem with ab initio calculations, HP/HT studies of actinides have further helped guide and develop theoretical modelling approaches and uncovered associated difficulties. Accordingly, this perspective article is devoted to reviewing the latest advancements made in actinide HP/HT ex situ chemical studies over the last decade, the state-of-the-art, challenges and discussing potential future directions of the science. The discussion is given with emphasis on thorium and uranium compounds due to the prevalence of their investigation but also highlights some of the latest advancements in high pressure chemical studies of transuranium compounds. The perspective also describes technical aspects involved in HP/HT investigation of actinide compounds.
Collapse
Affiliation(s)
- Gabriel L Murphy
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Philip Kegler
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Evgeny V Alekseev
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| |
Collapse
|
6
|
Murphy GL, Kegler P, Klinkenberg M, Wilden A, Henkes M, Schneider D, Alekseev EV. Incorporation of iodine into uranium oxyhydroxide phases. Dalton Trans 2021; 50:17257-17264. [PMID: 34786581 DOI: 10.1039/d1dt03237b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we have synthesised a novel uranium oxyhydroxide (UOH) phase, Rb2K2[(UO2)6O4(OH)6]·(IO3)2, under hydrothermal conditions which intercalates IO3-via a hybrid salt-inclusion and host-guest mechanism. The mechanism is based on favorable intermolecular bonding between disordered Rb+/K+ and IO3- ions and hydroxyl and layer void positions respectively. To examine whether the intercalation may occur ubiquitously for UOH phases, the known UOH mineral phases metaschoepite ([(UO2)8O2(OH)12]·12H2O), compreignacite (K2[(UO2)6O4(OH)6]·7H2O) and also related β-UO2(OH)2 were synthesised and exposed to aqueous I- and IO3- for 1 month statically at RT and 60 °C in air and the solid analysed using laser ablation inductively coupled plasma mass spectroscopy. Measurements indicate intercalation can occur homogeneously, but the affinity is dependent upon the structure of the UOH phases and temperature, where higher temperatures and when the interlayer space is free of initial moieties are favoured. It was also found that after repeated washing of the UOH samples with DI water the intercalated iodine was retained. UOH phases are known to form during the oxidative corrosion of spent nuclear fuel during an accident scenario in the near field, this work suggests they may help retard the transport of radiolytic iodine into the environment during a long-term release event.
Collapse
Affiliation(s)
- Gabriel L Murphy
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Philip Kegler
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Martina Klinkenberg
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Andreas Wilden
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Maximilian Henkes
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Dimitri Schneider
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Evgeny V Alekseev
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| |
Collapse
|
7
|
The Role of Acidity in the Synthesis of Novel Uranyl Selenate and Selenite Compounds and Their Structures. CRYSTALS 2021. [DOI: 10.3390/cryst11080965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herein, the novel uranyl selenate and selenite compounds Rb2[(UO2)2(SeO4)3], Rb2[(UO2)3(SeO3)2O2], Rb2[UO2(SeO4)2(H2O)]·2H2O, and (UO2)2(HSeO3)2(H2SeO3)2Se2O5 have been synthesized using either slow evaporation or hydrothermal methods under acidic conditions and their structures were refined using single crystal X-ray diffraction. Rb2[(UO2)2(SeO4)3] synthesized hydrothermally adopts a layered 2D tetragonal structure in space group P42/ncm with a = 9.8312(4) Å, c = 15.4924(9) Å, and V = 1497.38(15) Å, where it consists of UO7 polyhedra coordinated via SeO4 units to create units UO2(SeO4)58− moieties which interlink to create layers in which Rb+ cations reside in the interspace. Rb2[(UO2)3(SeO3)2O2] synthesized hydrothermally adopts a layered 2D triclinic structure in space group P1¯ with a = 7.0116(6) Å, b = 7.0646(6) Å, c = 8.1793(7) Å, α = 103.318(7)°, β = 105.968(7)°, γ = 100.642(7)° and V = 365.48(6) Å3, where it consists of edge sharing UO7, UO8 and SeO3 polyhedra that form [(UO2)3(SeO3)2O2] layers in which Rb+ cations are found in the interlayer space. Rb2[UO2(SeO4)2(H2O)]·2H2O synthesized hydrothermally adopts a chain 1D orthorhombic structure in space group Pmn21 with a = 13.041(3) Å, b = 8.579(2) Å, c = 11.583(2) Å, and V = 1295.9(5) Å3, consisting of UO7 polyhedra that corner share with one H2O and four SeO42− ligands, creating infinite chains. (UO2)2(HSeO3)2(H2SeO3)2Se2O5 synthesized under slow evaporation conditions adopts a 0D orthorhombic structure in space group Cmc21 with a = 28.4752(12) Å, b = 6.3410(3) Å, c = 10.8575(6) Å, and V = 1960.45(16) Å3, consisting of discrete rings of [(UO2)2(HSeO3)2(H2SeO3)2Se2O5]2. (UO2)2(HSeO3)2(H2SeO3)2Se2O5 is apparently only the second example of a uranyl diselenite compound to be reported. A combination of single crystal X-ray diffraction and bond valance sums calculations are used to characterise all samples obtained in this investigation. The structures uncovered in this investigation are discussed together with the broader family of uranyl selenates and selenites, particularly in the context of the role acidity plays during synthesis in coercing specific structure, functional group, and topology formations.
Collapse
|